• Title/Summary/Keyword: 환경촉매

Search Result 824, Processing Time 0.036 seconds

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

Identification and molecular characterization of the chitinase gene, EaChi, from the midgut of the earthworm, Eisenia andrei (붉은줄지렁이 (Eisenia andrei) 중장에서 발현되는 chitinase 유전자, EaChi의 동정 및 분자생물학적 특성에 관한 연구)

  • Tak, Eun Sik;Kim, Dae hwan;Lee, Myung Sik;Ahn, Chi Hyun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • Chitinases (EC 3.2.1.14) hydrolyze the ${\beta}$-1,4-linkages in chitin, the second most abundant polymer of N-acetyl-${\beta}$-D-glucosamine which is a structural component of protective biological matrices such as fungal cell walls and insect exoskeletons. The glycosyl hydrolases 18 family including chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Since earthworms live in the soil with a lot of microbial activities and fungi are supposed to be a major component of the diet of earthworm, it has been reported that there would be appropriate immune system to protect themselves from microorganisms attacks. In this study, the novel chitinase, EaChi, from the midgut of earthworm, Eisenia andrei, were identified and characterized. To obtain full-length cDNA sequence of chitinase, RT-PCR and RACE-PCR analyses were carried out by using the previously identified EST sequence amongst cDNA library established from the midgut of E. andrei. EaChi, a partial chitinase gene, was composed of 927 nucleotides encoding 309 amino acids. By the multiple sequence alignments of amino acids with other different species, it was revealed that EaCHI is a member of glycosyl hydrolases 18 family, which has two highly conserved domains, substrate binding and catalytic domain.

Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation (Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구)

  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.

Renal Expression of TonEBP and Urea Transporter in the Water-deprived Mongolian Gerbil(Meriones unguiculatus) (절수시 Mongolian Gerbil 콩팥에서 TonEBP와 Urea transporter의 발현 변화)

  • Park, Yong-Deok;Kim, Sung-Joong;Jung, Ju-Young
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.271-280
    • /
    • 2007
  • Tonicity-responsive enhancer binding protein(TonEBP) is a transcriptional factor essential in the function and development of the renal medulla. TonEBP plays a critical role in protecting renal medullary cells from the deleterious effect of hypertonicity. TonEBP is a key regulator of urinary concentration via stimulation of transcription of urea transporter(UT) in a manner independent of vasopressin. UT in the renal inner medulla is important for the conservation of body water due to its role in the urine concentrating mechanism. Mongolian gerbil(Meriones unguiculatus) has been as an model animal for studying the neurological disease such as stroke and epilepsy because of the congenital incomplete in Willis circle, as well as the investigation of water metabolism because of the long time-survival in the condition of water-deprived desert condition, compared with other species animal. In this study, we divide 3 groups of which each group include the 5 animals. In the study of 7 or 14 days water restricted condition, we investigated the TonEBP and UT-A by using a immunohistochemistry in the kidney. In the normal kidney, the distribution of TonEBP is generally localized on nuclei of inner medullary cells. Nuclear distribution of TonEBP is generally increased throughout the medulla in 7 and 14 days dehydrated group compared with control group. Increased nuclear localization was particularly dramatic in thin limbs. In control groups, UT-A was expressed in inner stripe of outer medulla(ISOM) and inner medulla(IM). UT-A was present in the terminal part of the short-loop of descending thin limbs (DTL) in ISOM and also present in the inner medullary collecting duct(IMCD), where the intensity of it gradually increased toward the papillary tip. In the dehydrated kidney, UT-A immunoreactivity was increased in the short-loop of DTL in ISOM and in the long-loop of DTL in the initial part of IM, where was expressed moderate positive reaction in the normal kidney. Also it was up regulated in the IMCD in initial & middle part of IM. However UT-A down regulated in the IMCD, where the intensity of it gradually decreased toward the papillary tip. These findings suggest that increased levels of TonEBP in medulla and UT-A in shot-loop of DTL and IMCD play a important role for maintain fluid balance in the water-deprived mongolian gerbil kidney.

Thermal and Electrochemical Stability of Morpholinium Ionic Liquids (모폴린계 이온성 액체의 열 및 전기화학적 안정성)

  • Kim, Hyun-Taek;Hong, Yeon Ki;Kang, Jeong Won;Lee, Young-Woo;Kim, Ki-Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.702-707
    • /
    • 2012
  • During the last few decades, toxic chemicals used in various industries have caused global pollution and the side products such as carbon dioxide and methane gas have contributed to global warming. Thus, it is desirable to develop new alternative solvents. It is well known that ionic liquids display a variety of environmentally friendly physical properties: nonvolatile, nonflammable, wide electrochemical windows, high inherent conductivities, wide thermal operating ranges, chemically inert, and limited miscibilities with organic solvents. Because of these characteristics, ionic liquids are promising candidates as solvents for synthetic chemistries, catalysis, and gas separations. In this study, we synthesized morpholiunium salts as N-ethyl-N-methylmorpholine Bromide, N-butyl-N-methylmorpholine Bromide, N-octyl-N-methylmorpholine Bromide, N-ethyl-N-methylmorpholine Tetrafluoroborate, N-butyl-N-methylmorpholine Tetrafluoroborate, N-octyl-N-methylmorpholine Tetrafluoroborate, N-ethyl-N-methylmorpholine Hexafluorophosphate, N-butyl-N-methylmorpholine Hexafluorophosphate, and N-octyl-N-methylmorpholine Hexafluorophosphate. The melting points, decomposition temperatures and electrochemical stabilities of the salts were measured by DSC, TGA, and CV, respectively. The salts with halide anion showed high melting points ($150{\sim}200^{\circ}C$), low decomposition temperatures ($200{\sim}230^{\circ}C$), narrow electrochemical stabilities (3.4~3.6 V). The synthesized salts with inorganic anions, on the other hand, presented low melting point ($50{\sim}110^{\circ}C$), high decomposition temperatures ($250{\sim}380^{\circ}C$), wide electrochemical stabilities (6.1~6.3 V). We also found that the properties depend on the length of the carbon chain.

Characteristics of Methanol Production Derived from Methane Oxidation by Inhibiting Methanol Dehydrogenase (메탄올탈수소효소 저해시 메탄산화에 의한 메탄올 전환생성 특성)

  • Yoo, Yeon-Sun;Han, Ji-Sun;Ahn, Chang-Min;Min, Dong-Hee;Mo, Woo-Jong;Yoon, Soon-Uk;Lee, Jong-Gyu;Lee, Jong-Yeon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.662-669
    • /
    • 2011
  • This study was conducted to biologically convert methane into methanol. Methane contained in biogas was bio-catalytically oxidized by methane monooxygenase (MMO) of methanotrophs, while methanol conversion was observed by inhibiting methanol dehydrogenase (MDH) using MDH activity inhibitors such as phosphate, NaCl, $NH_4Cl$, and EDTA. The degree of methane oxidation by methanotrophs was the most highly accomplished as 0.56 mmol for the condition at $35^{\circ}C$ and pH 7 under 0.4 (v/v%) of biogas ($CH_4$ 50%, $CO_2$ 50%) / Air ratio. By the inhibition of 40 mM of phosphate, 50 mM of NaCl, 40 mM of $NH_4Cl$ and $150{\mu}m$ of EDTA, methane oxidation rate could achieve more than 80% regardless of type of inhibitors. In the meantime, addition of 40 mM of phosphate, 100 mM of NaCl, 40 mM of $NH_4Cl$ and $50{\mu}m$ of EDTA each led to generating the highest amount of methanol, i.e, 0.71, 0.60, 0.66, and 0.66 mmol when 1.3, 0.67, 0.74, and 1.3 mmol of methane was each concurrently consumed. At that time, methanol conversion rate was 54.7, 89.9, 89.6, and 47.8% respectively, and maximum methanol production rate was $7.4{\mu}mol/mg{\cdot}h$. From this, it was decided that the methanol production could be maximized as 89.9% when MDH activity was specifically inhibited into the typical level of 35% for the inhibitor of concern.

Development of Visible Light Responsive Nitrogen Doped Photocatalysts ($TiO_2$, $Nb_2O_5$) for hydrogen Evolution (수소 생산을 위한 가시광선 감응 질소 도핑 $TiO_2$$Nb_2O_5$ 광촉매의 개발)

  • Choi, Mi-Jin;Chae, Kyu-Jung;Yu, Hye-Weon;Kim, Kyoung-Yeol;Jang, Am;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.907-912
    • /
    • 2011
  • Development of visible light responsive photocatalysts is a promising research area to facilitate utilization of solar energy for hydrogen production via photocatalytic water splitting. In this study two groups of samples, nitrogen (N)-doped niobium pentoxide ($Nb_2O_5$) and titanium dioxide ($TiO_2$) ($Nb_2O_5-N$, $HNb_3O_8-N$, $TiO_2-N$) and N-undoped ones ($Nb_2O_5$ and $TiO_2$) were tested. In order to utilize visible light, nitrogen atoms were doped in selected photocatalysts by using urea. A shift of the absorption edges of the Ndoped samples in the visible light region was observed. Under visible light irradiation, N-doped samples were more prominent photocatalytic activities than the N-undoped samples. Specifically, 99.7% of rhodamine B (RhB) was degraded after 60 minutes of visible light irradiation with $TiO_2-N$. Since $TiO_2-N$ shows the highest activity of RhB degradation, it was supposed to generate the highest current response. However, $HNb_3O_8-N$ showed the highest current response ($63.7mA/cm^2$) than $TiO_2-N$. More interestingly, when we compare the hydrogen production, $Nb_2O_5-N$ produced $19.4{\mu}mol/h$ of hydrogen.

The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping (매체 순환식 수소제조공정에 적합한 Fe2O3/ZrO2 산소전달입자에 구리 산화물 첨가가 미치는 영향에 관한 연구)

  • Lee, Jun Kyu;Kim, Cho Gyun;Bae, Ki Kwang;Park, Chu Sik;Kang, Kyoung Soo;Jeong, Seong Uk;Kim, Young Ho;Joo, Jong Hoon;Cho, Won Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.394-403
    • /
    • 2016
  • $H_2$ production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated $CO_2$. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between $Fe_2O_3$ and CuO are still lacking. In this study, we studied the effect of dopant of CuO to $Fe_2O_3/ZrO_2$ particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of $Fe^{2+}$ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped $Fe_2O_3/ZrO_2$ particle also showed the improved reactivity in the steam oxidation compared to $Fe_2O_3/ZrO_2$ particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.

Biorefinery Based on Weeds and Agricultural Residues (잡초 및 농림부산물을 이용한 Biorefinery 기술개발)

  • Hwang, In-Taek;Hwang, Jin-Soo;Lim, Hee-Kyung;Park, No-Joong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.340-360
    • /
    • 2010
  • The depletion of fossil fuels, ecological problems associated with $CO_2$ emissions climate change, growing world population, and future energy supplies are forcing the development of alternative resources for energy (heat and electricity), transport fuels and chemicals: the replacement of fossil resources with $CO_2$ neutral biomass. Several options exist to cover energy supplies of the future, including solar, wind, and water power; however, chemical carbon source can get from biomass only. When used in combination with environmental friend production and processing technology, the use of biomass can be seen as a sustainable alternative to conventional chemical feedstocks. The biorefinery concept is analogous to today's petroleum refinery, which produce multiple fuels and chemical products from petroleum. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is the co-production of a spectrum of bio-based products (food, feed, materials, and chemicals) and energy (fuels, power, and heat) from biomass [definition IEA Bioenergy Task 42]. By producing multiple products, a biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstocks. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. Future biorefinery may play a major role in producing chemicals and materials as a bridge between agriculture and chemistry that are traditionally produced from petroleum. Industrial biotechnology is expected to significantly complement or replace the current petroleum-based industry and to play an important role.

Anti-wrinkle Effect of Cambodian Phellinus linteus Extracts (캄보디안 상황버섯 추출물의 주름개선 효과 연구)

  • Cheon, Soon-Ju;Jang, Min-Jung;Jang, Young-Ah;Choi, Eun-Young;Jun, Dong-Ha;Kim, Young-Hun;Cho, Woo-A;Jeong, Yeon-Sook;Kwon, Hyeork-Bum;Kim, Tae-Hoon;Choi, Kyung-Im;Do, Jeong-Ryong;Lee, Chang-Eon;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1718-1721
    • /
    • 2008
  • The skin of human is constantly being exposed to environmental irritants such as ultraviolet, smoke and chemicals. These irritants cause free radicals and reactive oxygen species which leave serious damages on the cells of skin. The water and ethanol extracts of Cambodian Phellinus linteus were investigated for the activities of anti-lipid peroxidation and anti-wrinkle effects to apply as a functional ingredient for cosmetic products. As the result of evaluation of liquid oxidation rate by add $Fe^{2+}$ and $Cu^{2+}$ to Cambodian Phellinus linteus extracts, Cambodian Phellinus linteus ethanol extracts were higher than Cambodian Phellinus linteus water extracts in the chealting ability of $Fe^{2+}$ and $Cu^{2+}$. The Cambodian Phellinus linteus ethanol extracts exhibited that anti-lipid peroxidation higher than butylated hydroxytoluene (BHT) at the concentration of 0.1 mg/ml, 0.5 mg/ml and 1 mg/ml. Cambodian Phellinus linteus water and ethanol extracts showed a higher inhibitory effect on $Fe^{2+}$-induced lipid peroxidation compared to $Cu^{2+}$-induced lipid peroxidation. In the case of anti-wrinkle effect, the elastase inhibition activity of Cambodian Phellinus linteus ethanol extracts was 50.7%, and it is higher than urosolic acid at the concentration of 0.01 mg/ml. Also, in collagenase inhibition activity, Cambodian Phellinus linteus water extract showed low effect, but Cambodian Phellinus linteus ethanol extract was about 50% at a 0.1 mg/ml. concentration. These results proved that Cambodian Phellinus linteus had anti-lipid peroxidation and anti-wrinkle effect. Therefore, Cambodian Phellinus linteus could be useful as an anti-wrinkle cosmetic ingredient.