• Title/Summary/Keyword: 확장 해밀턴 이론

Search Result 3, Processing Time 0.018 seconds

Study on the Generalization of the Extended Framework of Hamilton's Principle in Transient Continua Problems (확장 해밀턴 이론의 일반화에 대한 고찰)

  • Kim, Jinkyu;Shin, Jinwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • The present work extends the recent variational formulation to more general time-dependent problems. Thus, based upon recent works of variational formulation in dynamics and pure heat diffusion in the context of the extended framework of Hamilton's principle, formulation for fully coupled thermoelasticity is developed first, then, with thermoelasticity-poroelasticity analogy, poroelasticity formulation is provided. For each case, energy conservation and energy dissipation properties are discussed in Fourier transform domain.

A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 선형탄성시스템의 변분동적수치해석법)

  • Kim, Jinkyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The extended framework of Hamilton's principle provides a new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics in terms of mixed formulation. Based upon such framework, a new variational numerical method of linear elasticity is provided for the classical single-degree-of-freedom dynamical systems. For the undamped system, the algorithm is symplectic with respect to the time step. For the damped system, it is shown to be accurate with good convergence characteristics.

A Temporal Finite Element Method for Elasto-Viscoplasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 탄점소성 시스템의 시간유한요소해석법)

  • Kim, Jin-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • In order to overcome the key shortcoming of Hamilton's principle, recently, the extended framework of Hamilton's principle was developed. To investigate its potential in further applications especially for material non-linearity problems, the focus is initially on a classical single-degree-of-freedom elasto-viscoplastic model. More specifically, the extended framework is applied to the single-degree-of-freedom elasto-viscoplastic model, and a corresponding weak form is numerically implemented through a temporal finite element approach. The method provides a non-iterative algorithm along with unconditional stability with respect to the time step, while yielding whole information to investigate the further dynamics of the considered system.