Browse > Article
http://dx.doi.org/10.7734/COSEIK.2016.29.5.421

Study on the Generalization of the Extended Framework of Hamilton's Principle in Transient Continua Problems  

Kim, Jinkyu (School of Architecture and Architectural Engineering, Hanyang Univ.)
Shin, Jinwon (College of Architecture, Architectural Engineering, Dankook Univ.)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.29, no.5, 2016 , pp. 421-428 More about this Journal
Abstract
The present work extends the recent variational formulation to more general time-dependent problems. Thus, based upon recent works of variational formulation in dynamics and pure heat diffusion in the context of the extended framework of Hamilton's principle, formulation for fully coupled thermoelasticity is developed first, then, with thermoelasticity-poroelasticity analogy, poroelasticity formulation is provided. For each case, energy conservation and energy dissipation properties are discussed in Fourier transform domain.
Keywords
extended framework of Hamilton's principle; thermoelasticity; poroelasticity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Apostolakis, G., Dargush, G.F. (2013) Mixed Variational Principles for Dynamic Response of Thermoelastic and Poroelastic Continua, Int. J. Solids & Struct., 50, pp.642-650.   DOI
2 Biot, M.A. (1956) Theory of Propagation of Elastic Waves in Fluid-Saturated Porous Solid. I. Low Frequency Range, J. Acoust. Soc. Am., 28, pp.168-178.   DOI
3 Biot, M.A. (1962a) Mechanics of Deformation and Acoustic Propagation in Porous Media, J. Appl. Phys., 33, pp.1482-1498.   DOI
4 Biot, M.A. (1962b) Generalized Theory of Acoustic Propagation in Porous Dissipative Media, J. Acoust. Soc. Am, 34, pp.1254-1264.   DOI
5 Chester, M. (1963) Second Sound in Solids, Phys. Rev., 131, pp.2013-2015.   DOI
6 Hamilton, W.R. (1834) On a General Method in Dynamics, Philos. Trans. Royal Soc. London, 124, pp.247-308.   DOI
7 Hamilton, W.R. (1835) Second Essay on a General Method in Dynamics, Philos. Trans. Royal Soc. London, 125, pp.95-144.   DOI
8 Kim, J., Dargush, G.F., Ju, Y.K. (2013) Extended Framework of Hamilton's Principle for Continuum Dynamics, Int. J. Solids & Struct., 50, pp.3418-3429.   DOI
9 Kim, J. (2014a) A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle, J. Comput. Struct. Eng. Inst. Korea, 27(1), pp.37-43.   DOI
10 Kim, J. (2014b) Higher order Temporal Finite Element Methods through Mixed Formalisms, SpringerPlus, 3, pp.1-25.   DOI
11 Kim, J., Kim. D. (2015) A Quadratic Temporal Finite Element Method for Linear Elastic Structural Dynamics, Math. & Comput. Simul., 117, pp.68-88.   DOI
12 Kim, J., Kim. D. (2016) Temporal Finite Element Methods through the Extended Framework of Hamilton's Principle, J. Mech. Eng. Sci., in press, DOI: 10.1177/0954406216642481.   DOI
13 Predeleanu, M. (1984) Development of Boundary Element Method to Dynamic Problems for Porous Media, Appl. Math. Modeling, 8, pp.378-382.   DOI
14 Kim, J., Dargush, G.F., Lee, H. S. (2016) Extended Framework of Hamilton's Principle in Heat Diffusion, Int. J. Mech. Sci., 114, pp.166-176.   DOI
15 Manolis, G.D., Beskos, D.E. (1989) Integral Formulation and Fundamental Solutions of Dynamic Poroelasticity and Thermoelasticity, ACTA Mechanica, 76, pp.89-104.   DOI
16 Maxwell, C. (1867) On the Dynamical Theory of Gases, Philos. Trans. Royal Soc. London, 157, pp.49-88.   DOI
17 Rayleigh, J.W.S. (1877) The Theory of Sound, Dover, New York.