• Title/Summary/Keyword: 확산연소

Search Result 439, Processing Time 0.02 seconds

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

Chemical effects of added $CO_{2}$ and $H_{2}O$ to major flame structures and NOx emission characteristics in $CH_4$/Air Counterflow Diffusion Flames (메탄-공기 대향류확산화염에서 $CO_2$$H_2O$의 첨가가 화염구조와 NOx배출특성에 미치는 화학적 영향)

  • Hwang, Dong-Jin;Park, Jeong;Lee, Kyung-Hwan;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.129-136
    • /
    • 2003
  • Numerical study with momentum-balanced boundary conditions has been conducted to grasp chemical effects of added $CO_{2}$ and $H_{2}O$ to fuel- and oxidizer-sides on flame structure and NO emission behavior in $CH_{4}$/Air counterflow diffusion flames. The dilution with $H_{2}O$ results in significantly higher flame temperatures and NO emission, but dilution with $CO_{2}$ has much more chemical effects than that with $H_{2}O$. Maximum reaction rate of principal chain branching reaction due to chemical effects decreases with added $CO_{2}$. but increases with added $H_{2}O$. The NO emission behavior is closely related to the production rate of OH, CH and N. The OH radical production rate increases with added $H_{2}O$ but those of CH, N decrease. On the other hand the production rates of OR CH and N decrease with added $CO_{2}$. It is found that NO emission behavior is considerably affected by chemical effects of added $CO_{2}$ and $H_{2}O$.

  • PDF

The extinction of unsteady counterflow diffusion flame without the retardation effect of a mixing layer (혼합층의 지연효과를 배제한 비정상 대향류 확산 화염의 소화)

  • Lee, Uen-Do;Oh, Kwang-Chul;Lee, Ki-Ho;Lee, Chun-Bum;Lee, Eui-Ju;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.93-101
    • /
    • 2003
  • The extinction of unsteady diffusion flame was experimentally studied in an opposing jet counterflow burner using diluted methane. The stabilized flame was perturbed by linearly varying velocity change that was generated by pistons installed on both sides of the air and fuel stream. As the results, the extinction of unsteady flame is dependent not only on the history of unsteadiness, but also on the initial condition. We found that there are several unsteady effects on the flame extinction. First, the extinction strain rates of unsteady cases are extended well beyond steady state extinction limits. Second, as the slope of the strain rate change increases, the unsteady extinction strain rate becomes larger. Third, the extension of unsteady extinction strain rate becomes smaller as the initial strain rate increases. We also found that the extension of the extinction limit mainly results from the unsteady response of the reaction zone because there is no retardation effect of a mixing layer for our experimental condition.

  • PDF

Experimental Study on the Lift-off Behavior of Tone-excited Propane Jet Diffusion flames (음향 가진 된 프로판 확산 화염의 부상 거동에 관한 실험적 연구)

  • Kim, Seung-Gon;Park, Joeng;Kim, Tea-Kwon;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.65-73
    • /
    • 2003
  • An experimental study on flame lift-off characteristics of propane jet flame highly diluted with nitrogen has been conducted introducing acoustic forcing with a tube resonant frequency. A flame stability curve is attained according to forcing strength and nozzle exit velocity for $N_2$ diluted flames. Flame lift-off behavior with forcing strength and nozzle exit velocity is globally categorized into three; a well premixed behavior caused by a collapsible mixing for large forcing strength, a coexistent behavior of well-premixed and edge flames interacting with well-organized inner fuel vortices for moderate forcing strengths, and edge flame behavior for small forcing strengths. Special focus is concentrated on the coexistent behavior of the flame base in lifted flame since this may give a hint to a possibility which the flame base behaves like a well-mixed premixed flame in highly turbulent lifted flames. It is also shown that the acoustic forcing to self-pulsating laminar lifted flame affects flame lift-off behavior considerably which is closely related to downstream flow velocity, mixture strength, effective fuel Lewis number, and flame stretch.

  • PDF

Experimental Study on Flame-Vortex Interactions in Turbulent Hydrogen Non-premixed Flames with Coaxial Air (동축공기 수소확산 화염에서의 화염과 와류의 상호작용 실험연구)

  • Kim, Mun-Ki;Oh, Jeong-Suk;Choi, Young-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.86-94
    • /
    • 2006
  • This paper investigates the effects of acoustic forcing on NOx emissions and mixing process in the near field region of turbulent hydrogen nonpremixed flames. The resonance frequency was selected to force the coaxial air jet acoustically, because the resonance frequency is effective to amplify the forcing amplitude and reduce NOx emissions. When the resonance frequency is acoustically excited, a streamwise vortex is formed in the mixing layer between the coaxial air jet and coflowing air. As the vortex develops downstream, it entrains both ambient air and combustion products into the coaxial air jet to mix well. In addition, the strong vortex pulls the flame surface toward the coaxial air jet, causing intense chemical reaction. Acoustic excitation also causes velocity fluctuations of coaxial air jet as well as fuel jet but, the maximum value of centerline fuel velocity fluctuation occurs at the different phases of $\Phi$=$180^{\circ}$ for nonreacting case and $\Phi$=$0^{\circ}$ for reacting case. Since acoustic excitation enhances the mixing rate of fuel and air, the line of the stoichiometric mixture fraction becomes narrow. Finally, acoustic forcing at the resonance frequency reduces the normalized flame length by 15 % and EINOx by 25 %, compared to the flame without acoustic excitation.

  • PDF

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Development of Process Technology for Low Pressure Vaccum Carburizing (저압식 진공 침탄(LPC) 열처리 공정 기술 개발)

  • Dong, Sang-Keun;Yang, Jae-Bok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.231-237
    • /
    • 2004
  • Vacuum carburizing continues to gain acceptance as an alternative to atmosphere carburizing particularly in the car industry. The advantages of low-pressure carburization over atmospheric gas carburization is not only the creation of a surface entirely free of oxide and the environmentally friendly nature of these methods but also an improvement in deformation behaviour achieved by combining carburization with gas quenching, a reduction in batch times by increasing the carburization temperature, low gas and energy consumption and the prevention of soot to a large extent. In present study, an improved vacuum carburizing method is provided which is effective to deposit carbon in the surface of materials and to reduce cycle time. Also LPC process simulator was made to optimize to process controls parameters such as pulse/pause cycles of pressure pattern, temperature, carburizing time, diffusion time. The carburizing process was simulated by a diffusion calculation program, where as the model parameters are proposed with help the experimental results and allows the control of the carburizing process with good accordance to the practical results. Thus it can be concluded that LPC process control method based on the theoretical simulation and experimental datas appears to provide a reasonable tool for prototype LPC system.

  • PDF

Effects of Lewis Number and Preferential Diffusion in Syngas Flame Diluted with He and Ar (He와 Ar으로 희석된 합성가스 화염에서 루이스 수와 선호확산효과)

  • Kim, Tae Hyung;Park, Jeong;Kwon, Oh Boong;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.28-34
    • /
    • 2014
  • Numerical study is conducted to grasp flame characteristics in $H_2/CO$ syngas counterflow diffusion flames diluted with He and Ar. An effective fuel Lewis number, applicable to premixed burning regime and even to moderately-stretched diffusion flames, is suggested through the comparison among fuel Lewis number, effective Lewis number, and effective fuel Lewis number. Flame characteristics with and without the suppression of the diffusivities of H, $H_2$, and He are compared in order to clarify the important role of preferential diffusion effects through them. It is found that the scarcity of H and He in reaction zone increases flame temperature whereas that of $H_2$ deteriorates flame temperature. Impact of preferential diffusion of H, $H_2$, and He in flame characteristics is also addressed to reaction pathways for the purpose of displaying chemical effects.

Influence of Fuel concentration gradient on the Extinction Behavior in Buoyancy minimized Counterflow Diffusion Flame (부력을 최소화한 대향류 확산화염 소화거동에서 연료농도구배의 영향)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.379-381
    • /
    • 2014
  • Influence of fuel concentration gradient was investigated near flame extinction limit in buoyancy-suppressed non-premixed counterflow flame with triple co-flow burner. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in He-diluted non-premixed counter triple co-flow flame experiments. Flame stability map was presented based on flame extinction and oscillation near extinction limit. The stability map via critical diluent mole fraction with global strain rate was represented by varying outer and inner He-diluted mole fractions. The flame extinction modes could be classified into five: an extinction through the shrinkage of the outmost edge flame forward the flame center with and without self-excitation, respectively ((I) and (II)), an extinction via the rapid expansion of a flame hole while the outmost edge flame is stationary (III), both the outermost and the center edge flames oscillate, and then a donut shaped flame is formed or the flame is entirely extinguished (IV), a shrinkage of the outermost edge flame without self-excitation followed by shrinking or sustain the inner flame (V).

  • PDF

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.