DOI QR코드

DOI QR Code

Effects of Lewis Number and Preferential Diffusion in Syngas Flame Diluted with He and Ar

He와 Ar으로 희석된 합성가스 화염에서 루이스 수와 선호확산효과

  • Kim, Tae Hyung (Power Generation Research Laboratory, Korea Electric Power Research Institute) ;
  • Park, Jeong (Department of Mechanical Engineering, Pukyong National University) ;
  • Kwon, Oh Boong (Department of Mechanical Engineering, Pukyong National University) ;
  • Park, Jong Ho (Department of Mechanical Engineering, Chungnam Natioanl University)
  • 김태형 (한전전력연구원 발전연구소) ;
  • 박정 (부경대학교 기계공학과) ;
  • 권오붕 (부경대학교 기계공학과) ;
  • 박종호 (충남대학교 기계공학과)
  • Received : 2014.11.19
  • Accepted : 2014.12.05
  • Published : 2014.12.30

Abstract

Numerical study is conducted to grasp flame characteristics in $H_2/CO$ syngas counterflow diffusion flames diluted with He and Ar. An effective fuel Lewis number, applicable to premixed burning regime and even to moderately-stretched diffusion flames, is suggested through the comparison among fuel Lewis number, effective Lewis number, and effective fuel Lewis number. Flame characteristics with and without the suppression of the diffusivities of H, $H_2$, and He are compared in order to clarify the important role of preferential diffusion effects through them. It is found that the scarcity of H and He in reaction zone increases flame temperature whereas that of $H_2$ deteriorates flame temperature. Impact of preferential diffusion of H, $H_2$, and He in flame characteristics is also addressed to reaction pathways for the purpose of displaying chemical effects.

Keywords

References

  1. Ilbas M, Crayford AP, Yilmaz I, Bowen PJ, Syred N. Laminar velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study. Int J Hydrogen Energy 2006;31:1768-79. https://doi.org/10.1016/j.ijhydene.2005.12.007
  2. Halter F, Chauveau C, Djebaili-Chaumeix N, Gokalp I. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures. Proc Comust Inst 2005;30:201-8.
  3. Dagaut P, Nicole A. Experimental and detailed kinetic modeling of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges. Proc Combust Inst 2005;30:2631-8.
  4. Park J, Keel SI, Yun JH, Kim TK. Effects of addition of electrolysis products in methane-air diffusion flames. Int J Hydrogen Energy 2007;32:4059-70. https://doi.org/10.1016/j.ijhydene.2007.05.024
  5. Kim JS, Park J, Kwon OB, Lee EJ, Yun JH, Keel SI (2008). Preferential diffusion effects in opposedflow diffusion flame with blended fuels of $CH_4$ and $H_2$. Int. J. Hydrogen Energy 33, 842-850.
  6. Park J, Park JS, Kim HP, Kim JS, Kim S, Cho HC, Cho KW, Park HS. NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide. Energy Fuels 2007;21:121-9. https://doi.org/10.1021/ef060309p
  7. Liu F, Guo H. Smallwood GJ, Gulder O. Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames. Proc Combust Inst 2002;29:1543-50.
  8. Fotache CG, Tan Y, Sung CJ, Law CK. Ignition of CO/$H_2/N_2$ versus heated air in counterflow: experimental and modeling results. Combust Flame 2000;120:417-26. https://doi.org/10.1016/S0010-2180(99)00098-X
  9. Vagelopoupos CM, Egolfopoulos FN. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Proc Combust Inst 1994;25:1317-23.
  10. Mclean IC, Smith DB, Taylor SC. The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO+OH reaction. Proc Combust Inst 1994;25:749-57.
  11. Brown MJ, Mclean IC, Smith DB, Taylor SC. Markstein lengths of CO/$H_2$/air flames, using expanding spherical flames. Proc Combust Inst 1996;26:875-81.
  12. Natarajan J, Lieuwen T, Seitzman J. Laminar flame speeds of $H_2$/CO mixtures: effects of $CO_2$ dilution, preheat temperature, and pressure. Combust Flame 2007;151:104-9. https://doi.org/10.1016/j.combustflame.2007.05.003
  13. Davis SG, Joshi AV, Wang H, Egolfopoulos F. An optimized kinetic model of $H_2$/CO combustion. Proc Combust Inst 2005;30:1283-92.
  14. Zsely IG, Zador J, Turanyi T. Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms. Proc. Combust Inst 2005;30:1273-81.
  15. Sun H, Yang SI, Jomaas G, Law CK. High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc Combust Inst 2007;31:439-46.
  16. Drake MC, Blint RJ. Structure of Laminar opposed-flow diffusion flames with CO/$H_2/N_2$ fuel. Combust Sci Tech 1988;61:187-224. https://doi.org/10.1080/00102208808915763
  17. Park J, Bae DS, Cha MS, Yun JH, Keel SI, Cho HC, Kim TK, Ha JS. Flame characteristics in $H_2$/CO synthetic gas diffusion flame diluted with $CO_2$: effects of flame radiation and mixture composition. Int. J. Hydrogen Energy 2008, in press.
  18. J. Park, O.B. Kwon, J. H. Yun, S.I. Keel, H.C. Cho, and S.C. Kim. Preferential diffusion effects on flame characteristics in $H_2$/CO syngas diffusion flames diluted with $CO_2$. Int. J. Hydrogen Energy 2008, in press.
  19. Chen R, Chaos M, Kothawala A. Lewis number effects in laminar diffusion flames near and away from extinction. Proc Combust Inst 2007;31:1231-37.
  20. Ruf B, Behrendt F, Deutchmann O, Kleditzsch S, Warnatz J. Modeling of chemical deposition of diamond films from acetylene-oxygen flames. Proc Combust Inst 2000; 28: 1455-61.
  21. Liu F, Gulder O. Effects of $H_2$ and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames. Combust Flame 2005;143:264-81. https://doi.org/10.1016/j.combustflame.2005.03.018
  22. Kee RJ, Miller JA, Evans GH, Dixon-Lewis G. A computational model of the structure and extinction of strained, opposed flow, premixed methaneare flame. Proc. Combust. Inst. 1988;22:1479-94.
  23. Lutz AE, Kee RJ, Grcar JF, Rupley FM. A fortran program for computing opposed-flow diffusion flames. Sandia National Laboratories Report 1997;SAND 96-8243.
  24. Ju Y, Guo H, Maruta K, Liu F. On the extinction limit and flammabiliy limit non-adiabatic stretched methane-air premixed flames. J. Fluid Mech 1997;342:315-34. https://doi.org/10.1017/S0022112097005636
  25. Kee RJ, Rupley FM, Miller JA. Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics. Sandia National Laboratories Report 1989; SAND 89-8009B.
  26. Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA. A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report 1994;SAND86-8246.
  27. Chellian HK, Law CK, Ueda T, Smooke MD, Williams FA. An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-airnitrogen diffusion flames. Proc Combust Inst 1990;23:503.
  28. Law CK. Dynamics of stretched flames. Proc Combust Inst 1988;22:1381-1402.