• 제목/요약/키워드: 확률신경망

검색결과 261건 처리시간 0.026초

잠재 고객 예측을 위한 능동 학습 기법 (Active Learning for Prediction of Potential Customers)

  • 박상욱;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.96-98
    • /
    • 2000
  • 본 논문에서는 상거래 환경에서 구매자와 비구매자들에 대한 데이터를 학습한 후, 잠재고객들 중에서 구매 확률이 높은 사람을 예측하는 문제에 효율적으로 접근하기 위해 능동적인 데이터 선택 기법을 이용한다. 실험 데이터는 ColL Challenge 2000에서 얻은 데이터로서, 구매자들의 정보보다 비구매자들의 정보가 더 많기 때문에 상당히 균형이 맞지 않는다. 따라서 모든 데이터를 한꺼번에 학습하는 경우에 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 RBF 기반의 신경망을 가지고 능동 학습을 함으로써 기존의 뱃치학습 보다 예측의 정확도를 향상시킬 수 있음을 보인다.

  • PDF

지역빈도해석을 통한 건조지역의 미계측 지점 확률홍수량 추정을 위한 연구 (Analysis for Flood Quantile Estimates at Ungauged Sites in Arid and Semi-arid Regions Based on Regional Frequency Analysis)

  • 정기철;강부식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.51-51
    • /
    • 2017
  • 지역빈도해석은 짧은 기간의 자료를 보유하고 있는 계측 지점이나 자료가 없는 미계측 지점에서의 확률수문량을 산정하기 위하여 많이 쓰여 진다. 지역빈도해석을 실시하기 위한 조건으로는 우선 수집된 하천유역들을 대상으로 수문학적 동질 지역을 구분하는 것이 중요하다. 그리고 구분되어진 지역에 포함되는 모든 지점들의 자료를 빈도해석 함으로써 관심 지점의 신뢰할 만한 확률수문량을 산정하는 것이다. 그동안의 지역빈도해석은 주로 비건조지역을 중심으로 홍수와 같은 재난재해 대비 그리고 수자원 관리를 위한 연구들을 실시해왔다. 본 연구의 주 목적은 건조지역의 수자원 관리를 위해 건조지역 하천유역을 중심으로 지역빈도해석을 실시하여 신뢰할만한 확률수문량을 산정하는 것이다. 확률수문량 산정값의 정확도를 향상시키기 위해 지역빈도해석 모델에 쓰여 지는 새로운 지형학적 변수들을 제공하였고 수문학적 동질 지역을 구분 위해 수집된 각 하천유역의 형상들을 확인하여 동질 지역을 정의하였다. 예를 들면, 수지형 유역, 부채형 유역, 격자형 유역과 같은 다른 형상들을 구분하여 각 유역 형상 종류별로 동질 지역을 만들었다. 건조지역의 지역빈도해석을 위해 미국 건조지역의 105개 하천유역 유량자료들을 수집 및 이용하였다. 확률수문량 산정을 위하여 앙상블 인경신경망 (Ensemble Artificial Neural Network)과 정준 상관 계수(Canonical Correlation Analysis)를 이용한 지역빈도해석 모델을 만들었다. 제안된 모델의 수행평가와 정확성 평가를 위해 리샘플링 기법인 10-겹 교차 검증 (10-fold cross-validation), 잭나이프 (Jackknife) 기법들을 이용하였고 모델로부터 산정된 확률수문량값을 편향 (Bias), 상대 편향(rBias), 평균 제곱근 오차 (RMSE), 상대 평균 제곱근 오차 (rRMSE)를 통하여 산정 값과 실제 관측 값의 차이를 분석하였다. 그 결과 건조지역의 지역빈도해석을 위해 새롭게 제시된 지형학적 변수들을 사용하였을 때 모델의 수행능력이 향상되었음을 확인하였다. 또한 하천유역 형상에 따라 동질 지역을 구분하였을 때 향상된 확률수문량이 산정되었다. 향상된 지역빈도해석 모델을 통해 건조지역의 신뢰할만한 확률수문량을 산정함으로써 건조지역의 효과적인 수자원 관리를 위한 수공시설물 설계에 중요한 정보들을 제공할 것이다.

  • PDF

확률적 자율 학습을 위한 베이지안 모델 (Bayesian Model for Probabilistic Unsupervised Learning)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.849-854
    • /
    • 2001
  • Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.

  • PDF

데이터마이닝 기법을 활용한 한국인의 고위험 음주 예측모형 개발 연구 (Developing the high-risk drinking predictive model in Korea using the data mining technique)

  • 박일수;한준태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1337-1348
    • /
    • 2017
  • 본 연구는 질병관리본부에서 실시한 전국 규모의 자료인 지역사회건강조사 2014년 자료를 이용하여 고위험 음주자들의 특성 및 요인을 파악하고 고위험 음주 예측모형을 개발했다. 예측모형 개발은 데이터마이닝 방법 중 로지스틱 회귀분석, 의사결정나무, 신경망 분석 3가지 방법을 적용했으며, 로지스틱 회귀분석의 주요 결과로는 40대 남자의 위험도가 높았고, 사무직과 판매서비스직의 위험도가 높았다. 특히 현재 흡연자인 경우 고위험 음주 위험도가 높았다. 3가지 방법 중 AUROC (area under a receiver operation characteristic curve) 측면에서 신경망 분석과 로지스틱 회귀분석이 가장 높게 나타났다. 또한 고위험 음주 예방을 위한 우선 관리 대상자를 선정함에 있어 신경망 분석과 로지스틱 회귀분석으로 개발된 예측모형의 사후확률을 기초로 두 가지 모형 모두 예측분포의 상위 10%인 집단에 해당되는 경우를 선정한 결과 신경망 분석이나 로지스틱 회귀모형 1가지 모형으로 적용하는 것보다 반응률 및 향상도가 다소 개선되는 것으로 나타났다. 본 연구에서 개발된 고위험 음주 예측모형과 우선 관리 대상자 선정 방법은 문제적 음주 예방 및 개선 교육, 절주 프로그램 개발 등에 보다 세분화되고 효과적인 건강관리 서비스를 제공을 위한 기초자료가 될 수 있을 것이다.

도시침수 해석을 위한 동적 인공신경망의 적용 및 비교 (Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis)

  • 김현일;금호준;한건연
    • 대한토목학회논문집
    • /
    • 제38권5호
    • /
    • pp.671-683
    • /
    • 2018
  • 도시유역에 대한 집중호우에 따른 침수피해가 증가하고 있으며, 기존에 수행된 많은 연구에서 입증 되어진 바와 같이 도시 침수는 하수관망의 통수능을 상회함에 따라 발생하는 내수침수에 주로 기인하고 있다. 도시화가 상당히 진행되고 인구가 밀집되어 있는 지역에 대한 침수피해는 심각한 사회 경제적 피해를 야기한다. 이에 따라 도시지역에 대한 홍수 예측을 위한 확정 및 확률론적 연구가 진행되어 왔지만, 충분한 선행시간을 확보하며 단시간에 홍수량에 대한 예측결과를 도출하기에는 부족한 실정이다. 본 연구에서는 최적의 실시간 도시 홍수 예측 기법을 제시하기 위하여 도시유출해석 기반 실시간 홍수 예측을 위한 IDNN, TDNN 그리고 NARX 동적신경망을 비교하였다. 강남 지역의 2010, 2011년 실제 호우사상에 대하여 총 홍수량 예측 결과, 입력 지연 인공신경망의 최대 Nash-Sutcliffe 효율 계수는 각각 0.86, 0.53, 시간 지연 인공신경망의 경우 0.92, 0.41, 외생변수를 이용한 비선형 자기 회귀의 경우 0.99, 0.98으로 나타났다. 연구 대상지역에 대한 각 맨홀 누적월류량을 고려한 예측 결과의 오차분석을 통하여 외생변수를 이용한 비선형 자기 회귀 기법을 사용하는 것이 추후 도시 홍수 대응체계 구축에 적합할 것으로 나타났다.

콘크리트 압축강도 추정을 위한 적응적 확률신경망 기법 (Adaptive Probabilistic Neural Network for Prediction of Compressive Strength of Concrete)

  • 김두기;이종재;장성규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.542-549
    • /
    • 2004
  • The compressive strength of concrete is commonly used criterion in producing concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, accurate and realistic strength estimation before the placement of concrete is being highly required. In this study, the estimation of the compressive strength of concrete was performed by probabilistic neural network (PNN) on the basis of concrete mix proportions. The estimation performance of PNN was improved by considering the correlation between input data and targeted output value. Adaptive probabilistic neural network (APNN) was proposed to automatically calculate the smoothing parameter in the conventional PNN by using the scheme of dynamic decay adjustment algorithm. The conventional PNN and APNN were applied to predict the compressive strength of concrete using actual test data of a concrete company. APNN showed better results than the conventional PNN in predicting the compressive strength of concrete.

  • PDF

Neural Network를 이용한 PDR 시스템의 정확도 향상 기법 (Advanced Scheme for PDR system Using Neural Network)

  • 곽휘권
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.5219-5226
    • /
    • 2014
  • 본 논문에서는 확률신경망 이론을 적용하여 GPS 단절구간에서 보행자의 위치정보의 정확도를 향상시키는 기법을 제안한다. 일반적인 보행 외 옆으로 걷기, 오리걸기, 기어가기 등 여러 보행 형태에 대한 보행 패턴을 학습하고 이에 대한 이동거리를 구하여 관성항법의 적분오차를 최소화하도록 한다. 제안 시스템은 보행자가 휴대할 수 있는 소형/경량화/저전력 설계된 H/W 모듈 형태로 구현을 하였으며, 건물 내에서의 보행자 이동 실험을 통해 제안 시스템의 성능을 검증하였다.

확률신경망을 이용한 구조물 손상평가-철도교 적용 (Structural Damage Assessment Based on PNN -Application to Railway Bridge)

  • 조효남;이성칠;오달수;최윤석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.321-329
    • /
    • 2002
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training patterns for neural network teaming process and ambiguity in the relationship of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damages of the railway bridge using dynamic response. The comparison between the mode shape and the natural frequency of structure as training pattern is investigated for approriate selection of the training pattern in the damage detection of railway bridge using the PNN.

  • PDF

마코프 모텔 기반 지문의 구조적 특징 분류 (Markov Models based Classification of Fingerprint Structural Features)

  • 정혜욱;원종진;김문현
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.33-38
    • /
    • 2005
  • 지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.

  • PDF

구조적 특징의 확률적 결합을 이용한 빠른 지문 분류 (Fast Fingerprint Classification Using the Probabilistic Integration of Structural Features)

  • 조웅근;홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.757-759
    • /
    • 2005
  • Henry의 지문분류법이 창안된 후, 지문분류에 대한 여러 가지 접근 방법이 연구되고 있다. 특이점에 의한 분류는 가장 많이 연구되고 있는 방법이지만, 지문영상의 품질에 민감하기 때문에 정확한 분류가 쉽지 않다. 의사 융선은 특이점과 더불어 지문을 분류하기 위한 특징으로, 특이점의 불완전함을 보완하는데 이용한다. 본 논문에서는 나이브 베이즈 분류기를 이용하여 특이점과 의사 융선 정보의 확률적인 분류 방법을 제안한다. NIST DB 4에 대해 제안하는 방법을 실험한 결과 5클래스 분류에 대해 $85.4\%$의 분류율을 획득하였으며, 제안하는 방법이 신경망, 최근접 이웃에 의한 분류에 비해 더 빠르다는 것을 확인하였다.

  • PDF