본 논문에서는 상거래 환경에서 구매자와 비구매자들에 대한 데이터를 학습한 후, 잠재고객들 중에서 구매 확률이 높은 사람을 예측하는 문제에 효율적으로 접근하기 위해 능동적인 데이터 선택 기법을 이용한다. 실험 데이터는 ColL Challenge 2000에서 얻은 데이터로서, 구매자들의 정보보다 비구매자들의 정보가 더 많기 때문에 상당히 균형이 맞지 않는다. 따라서 모든 데이터를 한꺼번에 학습하는 경우에 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 RBF 기반의 신경망을 가지고 능동 학습을 함으로써 기존의 뱃치학습 보다 예측의 정확도를 향상시킬 수 있음을 보인다.
지역빈도해석은 짧은 기간의 자료를 보유하고 있는 계측 지점이나 자료가 없는 미계측 지점에서의 확률수문량을 산정하기 위하여 많이 쓰여 진다. 지역빈도해석을 실시하기 위한 조건으로는 우선 수집된 하천유역들을 대상으로 수문학적 동질 지역을 구분하는 것이 중요하다. 그리고 구분되어진 지역에 포함되는 모든 지점들의 자료를 빈도해석 함으로써 관심 지점의 신뢰할 만한 확률수문량을 산정하는 것이다. 그동안의 지역빈도해석은 주로 비건조지역을 중심으로 홍수와 같은 재난재해 대비 그리고 수자원 관리를 위한 연구들을 실시해왔다. 본 연구의 주 목적은 건조지역의 수자원 관리를 위해 건조지역 하천유역을 중심으로 지역빈도해석을 실시하여 신뢰할만한 확률수문량을 산정하는 것이다. 확률수문량 산정값의 정확도를 향상시키기 위해 지역빈도해석 모델에 쓰여 지는 새로운 지형학적 변수들을 제공하였고 수문학적 동질 지역을 구분 위해 수집된 각 하천유역의 형상들을 확인하여 동질 지역을 정의하였다. 예를 들면, 수지형 유역, 부채형 유역, 격자형 유역과 같은 다른 형상들을 구분하여 각 유역 형상 종류별로 동질 지역을 만들었다. 건조지역의 지역빈도해석을 위해 미국 건조지역의 105개 하천유역 유량자료들을 수집 및 이용하였다. 확률수문량 산정을 위하여 앙상블 인경신경망 (Ensemble Artificial Neural Network)과 정준 상관 계수(Canonical Correlation Analysis)를 이용한 지역빈도해석 모델을 만들었다. 제안된 모델의 수행평가와 정확성 평가를 위해 리샘플링 기법인 10-겹 교차 검증 (10-fold cross-validation), 잭나이프 (Jackknife) 기법들을 이용하였고 모델로부터 산정된 확률수문량값을 편향 (Bias), 상대 편향(rBias), 평균 제곱근 오차 (RMSE), 상대 평균 제곱근 오차 (rRMSE)를 통하여 산정 값과 실제 관측 값의 차이를 분석하였다. 그 결과 건조지역의 지역빈도해석을 위해 새롭게 제시된 지형학적 변수들을 사용하였을 때 모델의 수행능력이 향상되었음을 확인하였다. 또한 하천유역 형상에 따라 동질 지역을 구분하였을 때 향상된 확률수문량이 산정되었다. 향상된 지역빈도해석 모델을 통해 건조지역의 신뢰할만한 확률수문량을 산정함으로써 건조지역의 효과적인 수자원 관리를 위한 수공시설물 설계에 중요한 정보들을 제공할 것이다.
Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.
Journal of the Korean Data and Information Science Society
/
제28권6호
/
pp.1337-1348
/
2017
본 연구는 질병관리본부에서 실시한 전국 규모의 자료인 지역사회건강조사 2014년 자료를 이용하여 고위험 음주자들의 특성 및 요인을 파악하고 고위험 음주 예측모형을 개발했다. 예측모형 개발은 데이터마이닝 방법 중 로지스틱 회귀분석, 의사결정나무, 신경망 분석 3가지 방법을 적용했으며, 로지스틱 회귀분석의 주요 결과로는 40대 남자의 위험도가 높았고, 사무직과 판매서비스직의 위험도가 높았다. 특히 현재 흡연자인 경우 고위험 음주 위험도가 높았다. 3가지 방법 중 AUROC (area under a receiver operation characteristic curve) 측면에서 신경망 분석과 로지스틱 회귀분석이 가장 높게 나타났다. 또한 고위험 음주 예방을 위한 우선 관리 대상자를 선정함에 있어 신경망 분석과 로지스틱 회귀분석으로 개발된 예측모형의 사후확률을 기초로 두 가지 모형 모두 예측분포의 상위 10%인 집단에 해당되는 경우를 선정한 결과 신경망 분석이나 로지스틱 회귀모형 1가지 모형으로 적용하는 것보다 반응률 및 향상도가 다소 개선되는 것으로 나타났다. 본 연구에서 개발된 고위험 음주 예측모형과 우선 관리 대상자 선정 방법은 문제적 음주 예방 및 개선 교육, 절주 프로그램 개발 등에 보다 세분화되고 효과적인 건강관리 서비스를 제공을 위한 기초자료가 될 수 있을 것이다.
도시유역에 대한 집중호우에 따른 침수피해가 증가하고 있으며, 기존에 수행된 많은 연구에서 입증 되어진 바와 같이 도시 침수는 하수관망의 통수능을 상회함에 따라 발생하는 내수침수에 주로 기인하고 있다. 도시화가 상당히 진행되고 인구가 밀집되어 있는 지역에 대한 침수피해는 심각한 사회 경제적 피해를 야기한다. 이에 따라 도시지역에 대한 홍수 예측을 위한 확정 및 확률론적 연구가 진행되어 왔지만, 충분한 선행시간을 확보하며 단시간에 홍수량에 대한 예측결과를 도출하기에는 부족한 실정이다. 본 연구에서는 최적의 실시간 도시 홍수 예측 기법을 제시하기 위하여 도시유출해석 기반 실시간 홍수 예측을 위한 IDNN, TDNN 그리고 NARX 동적신경망을 비교하였다. 강남 지역의 2010, 2011년 실제 호우사상에 대하여 총 홍수량 예측 결과, 입력 지연 인공신경망의 최대 Nash-Sutcliffe 효율 계수는 각각 0.86, 0.53, 시간 지연 인공신경망의 경우 0.92, 0.41, 외생변수를 이용한 비선형 자기 회귀의 경우 0.99, 0.98으로 나타났다. 연구 대상지역에 대한 각 맨홀 누적월류량을 고려한 예측 결과의 오차분석을 통하여 외생변수를 이용한 비선형 자기 회귀 기법을 사용하는 것이 추후 도시 홍수 대응체계 구축에 적합할 것으로 나타났다.
The compressive strength of concrete is commonly used criterion in producing concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, accurate and realistic strength estimation before the placement of concrete is being highly required. In this study, the estimation of the compressive strength of concrete was performed by probabilistic neural network (PNN) on the basis of concrete mix proportions. The estimation performance of PNN was improved by considering the correlation between input data and targeted output value. Adaptive probabilistic neural network (APNN) was proposed to automatically calculate the smoothing parameter in the conventional PNN by using the scheme of dynamic decay adjustment algorithm. The conventional PNN and APNN were applied to predict the compressive strength of concrete using actual test data of a concrete company. APNN showed better results than the conventional PNN in predicting the compressive strength of concrete.
본 논문에서는 확률신경망 이론을 적용하여 GPS 단절구간에서 보행자의 위치정보의 정확도를 향상시키는 기법을 제안한다. 일반적인 보행 외 옆으로 걷기, 오리걸기, 기어가기 등 여러 보행 형태에 대한 보행 패턴을 학습하고 이에 대한 이동거리를 구하여 관성항법의 적분오차를 최소화하도록 한다. 제안 시스템은 보행자가 휴대할 수 있는 소형/경량화/저전력 설계된 H/W 모듈 형태로 구현을 하였으며, 건물 내에서의 보행자 이동 실험을 통해 제안 시스템의 성능을 검증하였다.
Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training patterns for neural network teaming process and ambiguity in the relationship of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damages of the railway bridge using dynamic response. The comparison between the mode shape and the natural frequency of structure as training pattern is investigated for approriate selection of the training pattern in the damage detection of railway bridge using the PNN.
지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.
Henry의 지문분류법이 창안된 후, 지문분류에 대한 여러 가지 접근 방법이 연구되고 있다. 특이점에 의한 분류는 가장 많이 연구되고 있는 방법이지만, 지문영상의 품질에 민감하기 때문에 정확한 분류가 쉽지 않다. 의사 융선은 특이점과 더불어 지문을 분류하기 위한 특징으로, 특이점의 불완전함을 보완하는데 이용한다. 본 논문에서는 나이브 베이즈 분류기를 이용하여 특이점과 의사 융선 정보의 확률적인 분류 방법을 제안한다. NIST DB 4에 대해 제안하는 방법을 실험한 결과 5클래스 분류에 대해 $85.4\%$의 분류율을 획득하였으며, 제안하는 방법이 신경망, 최근접 이웃에 의한 분류에 비해 더 빠르다는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.