• Title/Summary/Keyword: 확률론적 해석 방법

Search Result 249, Processing Time 0.037 seconds

Probability-Based LCCO2 Evaluation for Undergroung Structture with Repairing Timings Exposed to Carbonation (탄산화에 노출된 지하구조물의 보수횟수에 따른 LCCO2 평가)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.239-246
    • /
    • 2017
  • RC(Reinforced Concrete) structures can keep their performance during intended service life through initial service life and extension of the life through repairs. In the deterministic repairing method, cost and the related $CO_2$ emission increase with step-shaped escalation, however continuous results can be obtained through probabilistic repairing technique, and this is capable of reducing $CO_2$ emission through $CO_2$ absorption. In the work, repairing timing and $CO_2$ emission/absorption are evaluated based on the different methods like deterministic and probabilistic manner. The probabilistic technique considering $CO_2$ absorption with carbonation progress is evaluated to be very effective to reduction of $CO_2$ emission through extension of initial and additional service life due to repairs. When the variations of the service life from initial construction and repair material can be determined, the proposed technique can contribute to reduction of cost and $CO_2$ with decreasing repairing number.

Analysis on random vibration of a non-linear system in flying vehicle due to stochastic disturbances (불규칙 교란을 받는 비행체에 장착된 비선형 시스템의 난진동 해석)

  • 구제선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1426-1435
    • /
    • 1990
  • Dynamic behaviour of point tracking system mounted on flying vehicle shaking in a random manner is investigated and the system dynamic is represented by nonlinear stochastic equations. 2-D.O.F. nonlinear stochastic equations are successfully transformed to linear stochastic equations via equivalent linearization procedure in stochastic sense. Newly developed hybrid technique is used to obtain response statistics of the system under non-white random excitation, which is proved to be remarkably accurate one by performing stochastic simulation.

Feasibility Study on the Risk Quantification Methodology of Railway Level Crossings (철도건널목 위험도 정량평가 방법론 적용성 연구)

  • Kang, Hyun-Gook;Kim, Man-Cheol;Park, Joo-Nam;Wang, Jong-Bae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.605-613
    • /
    • 2007
  • In order to overcome the difficulties of quantitative risk analysis such as complexity of model, we propose a systematic methodology for risk quantification of railway system which consists of 6 steps: The identification of risk factors, the determination of major scenarios for each risk factor by using event tree, the development of supplementary fault trees for evaluating branch probabilities, the evaluation of event probabilities, the quantification of risk, and the analysis in consideration of accident situation. In this study, in order to address the feasibility of the propose methodology, this framework is applied to the prototype risk model of nation-wide railway level crossings. And the quantification result based on the data of 2005 in Korea will also be presented.

  • PDF

Hardness Evaluation of Spot Welding Using Instrumented Indentation Technique (계장화 압입시험법을 이용한 점용접부의 경도평가)

  • Jin, Ji-Won;Kwak, Sung-Jong;Yoo, Dong-Ok;Kim, Tae-Seong;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1081-1086
    • /
    • 2012
  • This study deals with hardness evaluation for spot welding by using an instrumented indentation technique to improve the quality of the inspection methodology. First, an instrumented indentation test and a Rockwell hardness test were performed for normal and abnormal spot welding. The hardness to indentation force-displacement curve obtained using each of the tests was compared. Furthermore, an analysis was conducted using the hardness obtained by the instrumented indentation technique. A quality control standard based on reliability was this evaluated for spot welding.

A study for the stabilization of large scale rock slope designed in the fractured rock mass (파쇄암반에 설계된 대규모 사면의 안정화 고찰)

  • 홍예성;조태진;한공창
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1996.03a
    • /
    • pp.55-72
    • /
    • 1996
  • 암반사면의 안정성은 암반내에 발달된 불연속면의 기하학적 속성과 강도정수에 크게 영향을 받으며, 사면방향에 대한 불연속면들의 상대적인 방향성들은 구조적으로 발생 가능한 붕괴양상을 결정하게 된다. 불연속면을 따라 미끄러짐이 발생하는 암반사면의 불안정성 분석에는 결정론적인 해석(deterministic analysis)과 확률론적인 해석(probabilistic analysis)들을 포함하여 수많은 방법들이 이용되고 있다. (중략)

  • PDF

Application of probabilistic VE/LCC Analysis Models for Quay Wall Structures (안벽구조물의 확률론적 VE/LCC 분석모델 적용방안)

  • Ahn, Jong-Pil;Lee, Cheung-Bin;Park, Ju-Won;Yu, Deog-Chan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.5
    • /
    • pp.71-79
    • /
    • 2007
  • It is common that the analysis of VE/LCC is performed in design phase of quay wall structures. The analysis is mainly executed based on experience and engineering sense of expert considering the selection of construction method, construction and maintenance cost. Recently there are increasing demands on the analysis that includes uncertainty and vulnerability of input parameters, for this purpose, fuzzy reliability based probabilistic VE/LCC analysis model for quay wall structures is suggested. In VE/LCC analysis for quay wall structures, the application of probabilistic analysis method give very similar results compare with those of deterministic analysis method. It is anticipated that the methodology proposed in this paper can also be utilized in the design and maintenance phase of other facilities where decision making is made for the probabilistic life cycle cost and value analysis.

Probability Theory-based Flood Vulnerability for Agricultural Reservoirs under Climate Change (기후변화 대응 농업용 저수지의 확률론 기반 홍수 취약성 산정)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.346-346
    • /
    • 2017
  • 기후변화에 따른 기상이변의 동시다발적인 발현은 농촌 지역의 홍수 발생 빈도를 증가시키고 있다. 현재의 기후시스템은 과거의 강우빈도를 기준으로 산정한 설계기준을 벗어나는 강우 사상을 빈번하게 발생시키므로 설계변수의 불확실성을 보다 합리적인 방법으로 정량화할 필요가 있다. 본 연구의 목적은 기후변화에 대응하여 확률론을 이용한 농업용 저수지의 홍수 취약성을 산정하는 데 있다. 먼저 홍수 취약성 해석에 필요한 과거와 미래 수문 자료를 수집하고 전처리 과정을 통해 해석에 적합한 자료로 구축하였다. 설계변수의 불확실성을 분석하기 위해 지속시간별 최대강우량, 유입 설계홍수량에 대해 부트스트랩 (bootstrap) 기법을 적용하여 자료를 재추출하였다. 부트스트 랩은 표본집단의 확률분포에 대해 가정을 하지 않고 표본집단의 통계적 특성을 이용하여 모집단의 통계적 추론을 할 수 있는 비모수적인 리샘플링 기법이다. 부트스트랩 추론은 표본집단의 추정치, 편의, 표준오차를 산정하고 신뢰구간을 추정한다. 부트스트랩 추론을 통해 산정하는 신뢰수준을 이용하여 농업용 저수지의 홍수 취약성을 산정하였다. 본 연구는 설계변수에 내재하는 불확실성을 부트스트랩 기법을 이용하여 정량화하고 확률적인 값을 가지는 홍수 취약성으로 산정하여 제시할 수 있다.

  • PDF

Applicability of Practical Reliability Analysis to Develop Fragility Curves for Levee (제방의 취약도 곡선 작성을 위한 실용적 신뢰성 해석의 적용성)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.19-30
    • /
    • 2022
  • Developing a fragility curve for the levee requires calculating the probability of failure according to the water level for each failure mode. Since probabilistic analysis requires iterative analysis to account for variability in geotechnical parameters, the fragility curve development inevitably requires many iterative calculations. Therefore, approximate probabilistic analysis techniques are usually applied to reduce the amount of calculation in developing the levee fragility curve. However, their accuracy has not been determined clearly. This study calculated the failure probability of slope and piping failure mode for an actual levee through probabilistic methods, such as FOSM, PEM, and MCS. Then, the fragility curve of the levee according to the water level was developed. The results of the approximate methods: FOSM and PEM, were compared with those of MCS to evaluate the applicability to the fragility curve for slope and piping failure mode.

A Study on the Utility of Statistical Power Balance Method for Efficient Electromagnetic Analysis of Large and Complex Structures (복잡한 대형 구조물의 효율적인 전자파 해석을 위한 통계적인 PWB 방법의 유용성에 관한 연구)

  • Lee, Young-Seung;Park, Seung-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.189-197
    • /
    • 2013
  • With the trend of technological advances in electronic communications and the advent of ubiquitous environments, the density of existing electronic equipment in the surroundings is increasing significantly. It is hence great importance to study the numerically efficient and fast algorithm for complex and large environments to identify their electromagnetic compatibility and interference characteristics of equipments installed in those structure. This paper introduces a statistical-based power balance method(PWB) for the analysis of these problems and considers its practical utility. The 2-dimensional lossy rectangular cavity was numerically revisited to clarify its relationship with the classical deterministic analysis solutions based on the Maxwell's equation. It can be shown that the statistical assumptions and analysis results from the power balance method correspond to the volume average over the realistic deterministic domain. This statistical power balance approach should be a sufficiently practical alternative to the electromagnetic problem of complex and large environment since it is apparent that the full-wave analysis methods have some severe limits of its computational burdens under the situation of complex and large environment.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.