• Title/Summary/Keyword: 화학 II 교과서

Search Result 48, Processing Time 0.033 seconds

A Analysis of Teachers' Perception of the Chemistry I & Chemistry II in the 7th National Curriculum and Their Demands on Curriculum Revising (제7차 고등학교 화학 선택 교육과정에 대한 교사들의 인식 및 요구 분석)

  • Hong, Mi-Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.394-403
    • /
    • 2006
  • purpose of this study was to analyze high school chemistry teachers perception of the Chemistry I & Chemistry II in the 7th national curriculum and their demands on the revision of curriculum. A nationwide survey was administered to obtain the responses from 108 high school chemistry teachers. More than half of the participants thought the current curriculum of Chemistry I and Chemistry II needed revising. As the results, a major drawback of Chemistry I was a difficulty in explaining phenomena due to absence of basic concepts, and that of Chemistry II was an excess of the contents for high school science courses. Unfortunately, it was found out that inquiry activities existed only in name, especially in case of Chemistry II. Regarding the manner of content organization of Chemistry I in new curriculum, demand on a concept-based approach outnumbered theme-based approach. For revising Chemistry, the majority of participants demanded basic chemistry concepts to be introduced, without supplementation of quantitative approaches and deepening level of concepts. An urgent request for Chemistry II was reducing content by shifting relevant concepts to Chemistry I. Implications for high school chemistry education including revising curriculum were discussed.

Contraction of Alpha-nickel Hydroxide Layers by Excess Coulombic Attraction of Anions (전기화학적으로 형성된 알파 상 니켈 수산화물의 층간 거리에 미치는 음이온의 영향 연구)

  • Kim, Gwang-Beom;Ganesh Kumar, V.;Bae, Sang-Won;Lee, Jae-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.141-152
    • /
    • 2006
  • In this study computer assisted instruction materials for the ‘Solution' chapter in high school chemistry II textbook were developed based on a view of particle and analyze the effect of the materials on 10th and 11th high school students. The contents of developed materials are dissolution, vapor pressure, the change of boiling point and freezing point, osmosis, and so on which are the major contents of Solution chapter in high school chemistry II textbook. Materials were developed with using animation and simulation for students understanding of the phenomena with a particle view point. Many phenomena in a solution were not simplified by colligative property of solution, but tried to explain by the concept of attraction between solute and solvent molecules. This computer assisted learning materials were developed using Flash 5.0 and Flash 6.0 Action Script. Educational effects of the materials on 10th and 11th grade students represented statistically meaningful increase of concept understanding. Especially the materials were effective to the transition stage or formal stage students in 10th grade and formal stage or the natural science major students in 11th grade.

An Analysis of the High School 'Common Science' Contents and Textbooks (고등학교 ‘공통과학’의 교과내용 및 교과서 분석)

  • Lee, Gwang-Ho;Choi, Jong-Bum;Park, Moon-Kook;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.453-463
    • /
    • 1997
  • The contents of high school 'Common science' textbooks was analyzed qualitatively and quantitatively. Seven common science textbooks were selected and its contents, structure, inquiry, activities, appendix and its characteristics were investigated, and analyzed using the Goal Clusters of Project Synthesis and Romey's indices of text evaluation were calculated. The contents of each unit are not much different among textbooks because they are written according to the curriculum ordinance and textbook guidelines of the Ministry of Education. The textbooks was consist of $471{\sim}519$ pages. It was distribute similarly among the chapter of 'materials', 'forces', lives' and 'earth'. The chapter of 'energy' and 'environment' was treat significantly. The contents and structure of common science is a mere physical consolidation. I make an alternative plan that a topic form. Inquiry activities used in the textbooks are 11 type, however most of that is interpretation of data, experiment, survey and discussion. Ninety six percents of the experiment, belong to the 1st level, four percents of that belong to the 2nd level of the Schwab's inquiry level and there are no activities of the 3rd level. Little attention is given to Goal Cluster I, II, IV in the common science textbooks currently employed. Its content should be broadened to include all Goal Clusters of Project Synthesis. Homey's indices representing the degrees of student involvement. are $0.57{\sim}1.14$ for sentence analysis, $0.60{\sim}1.67$ for figure and diagram analysis, $0.67{\sim}1.50$ for analysis of questions at chapter ends, respectively, student activity per page investigated being $0.6{\sim}0.9$. But chapter summaries cease to repeats the conclusions of the chapter also it be rather formally and inattentively written.

  • PDF

An Analysis of Conceptual Difficulties in Electrolysis of High School Students, In-service Chemistry Teachers, and Chemistry Teachers (전기분해 관련 개념에 대한 고등학생, 예비 교사, 화학 교사들의 어려움에 대한 분석)

  • Park, Jin-Hee;Paik, Seoung-Hey;Kim, Dong-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.6
    • /
    • pp.660-670
    • /
    • 2003
  • This study examined the conceptions of high school students, In-service chemistry teachers, and chemistry teachers related to the electrolysis phenomena by questionnaires and follow-up interviews. High school chemistry II textbooks were analyzed for finding the cause of the misconceptions of the teachers and students. From the analysis, it was found that many teachers represented to students the reduction-oxidation reaction and the electrodes of electrolysis are opposite to the reaction of a chemical cell without explanation of the principles. It means that students would learn the electrolysis phenomena by rote. But the teachers thought that it was not necessary to explain the principles to students because the students could not understand. Also, some of the teacher had misconceptions in electrolysis of solution taking no account of water electrolysis. They only considered the reduction-oxidation reactions of the ions already were contained in solution. They did not considered the ions generated by the electrolysis. This tendency is similar to In-service chemistry teachers and high school students. Also, this tendency can be found in chemistry II textbooks.

A Study of High School Students' Conceptions of Mixing Phenomena Related to Dissolution and Diffusion (용해.확산과 관련된 혼합현상에 대한 고등학생들의 개념 유형 분석)

  • Hur, Mi-Youn;Jeon, Hey-Sook;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • The purpose of this study was to investigate the types of conceptions of mixing phenomena related to dissolution and diffusion in high school students. The subjects of the investigation consisted of 108 students who took chemistry I course at 11th grade and 29 students who took chemistry II course at 12th grade. For this study, it was found that the many students had the alternative conception that chalk didn't dissolve in water because chalk was a nonpolar material. Most of the students understood the phenomena which carbon tetrachloride and water will not mix as the attraction conception. But many of the other students understood the phenomenon as characteristic of the materials such as difference of density. Many of the students understood the phenomenon of mixing ethanol and water constantly as ‘Attraction conception'. The phenomenon which is mixed ink and water was just accepted by the most students as the spreading of ink in water without understanding the reason of mixing. The phenomena of mixing iodine and carbon tetrachloride was understood as ‘Space conception' or ‘Attraction conception'. It could be inferred that the diverse alternative conceptions related to dissolution and diffusion phenomena were generated by the absence of entropy concept. Therefore, the explanations of science textbooks related to dissolution and diffusion phenomena need to change for students to understand them correctly.

Comparative Analysis of Chemistry Curriculum between Korea and New Zealand (한국과 뉴질랜드의 화학 교육과정 비교)

  • Kim, Hyun Jung
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The purpose of this study is to analyze the chemistry curriculum between Korea and New Zealand. Both countries state that they want to cultivate their key competencies through the curriculum, and Korea' key competencies are similar to New Zealand'. Also, we find a strong correlation between key competencies of Korea science and achievement aims of the nature of science in New Zealand. Specially, the achievement standards that cultivate the key competencies are presented separately in New Zealand curriculum and NCEA, and confirms the achievement level through internal evaluation. By comparison, the curriculum content for chemistry is a good fit because of the overlap in the content. The Chemistry I is in the 7th level of New Zealand curriculum and the Chemistry II is in the 7th and 8th levels of New Zealand. However, there are some differences in hydrocarbon, ideal gas equation, colligative property and understanding of spectroscopic data.

The Effect of STS Instruction through Science to Enhance Hypothetical Deductive Thinking Skills for Creativity - Water Section of Chemistry I (창의성의 기저가 되는 가설 연역적 사고력 신장을 고려한 과학 교수인 STS 수업 전략의 효과 - 과학 I의 물 단원)

  • Kang, Soon-Hee;Kim, Eun-Sook
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.3
    • /
    • pp.327-335
    • /
    • 2005
  • This study investigates student achievement and science-related attitudes on STS hypothetical deductive instruction strategy in the water section of high school chemistry. Two 11th grade co-ed high school classes participated in the study; one control group and one treatment group. After being taught for 10 class periods during the second semester. ANCOVA analysis revealled no significant difference (p>.05) between two groups' achievement tests. However, analysis by ANCOVA did show that the scores for science-related attitudes in the treatment group were significantly higher than those of the control group (p<.05). In particular, the scores of science learning contents and science value about science-related attitude were significantly higher in the treatment group.

Development of Theme-Based Integrated Unit in the Middle School Science and Analysis of it's Effects (중학교 과학수업을 위한 주제중심 통합단원의 개발 및 효과 분석)

  • Park, Soo-Kyong;Kim, Sang-Dal;Ju, Gook-Yong;Nam, Youn-Kyong
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.350-359
    • /
    • 2001
  • The purpose of this study is to develop theme-based integrated science unit by the interdisciplinary approach and to analyze it's effects on the science achievement and the attitude towards science learning. 'Interaction' and 'Stability' were selected as the integrated themes, and the main concept and subconcept in relation to the themes were extracted from the four areas of science, and the learning contents were constructed in the integrated ways. While the main concept have relevance to subconcept in the interaction, the main concept have little relevance to subconcept in the stability. Therefore, the stability was to fit with middle school integrated science theme, but the interaction was not. The theme-based integrated science units developed was implemented in middle school, and the results are follows. First, the science achievement of group of theme-based integrated science teaching is significantly higher than those of group of traditional teaching. Second, the scores of the test of attitude toward science learning of the group of theme-based integrated science teaching is significantly higher than those of group of traditional teaching. Third, the students' perception of theme-based integrated science teaching was positive. The students have participation, interest, motivation in theme-based integrated science teaching, and students have difficulty in learning theme-based integrated science teaching.

  • PDF