• Title/Summary/Keyword: 화학전지

Search Result 1,712, Processing Time 0.021 seconds

Electrochemical Properties of $Li_xV_3O_8$ Composite Cathode for All-solid state Rechargeable Battery (고체전지용 $Li_xV_3O_8$ Composite 정극의 전기화학적 특성)

  • 김종욱;성창호;구할본;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.733-738
    • /
    • 1998
  • 본 논문에서는 고체 리듐 전지를 개발하기 위하여 poly(ethylene oxide) [PEO] 에 $LiClO_4$, poly (vinylidene fluoride) [PVDF] 및 가소제로 propylene carbonate [PC] 와 ethylene carbonate[EC] 등을 혼합여 고분자 저해질을 제조하였다. 또한 고체 리듐 전지용 정극으로써 우수한 특성이 기대되는 $Li_xV_3O_8$을 졸-겔법에 의해 합성하여 $Li_xV_3O_8$SPE/Li cell 의 전기화학적 특성을 측정하였다. 고분자 matrix는 PEO와 PVDE를 혼합 사용한 결과 $PEO_4 PVDF_4LiCIO_4PC_5EC_5$ 고분자 전해질이 상온에서 $5.2 {\times} 10{-3}$ S/cm 의 높은 이온 전도도를 나타냈으며 리듐 이온 transference number는 0.3이었다. 졸-겔법에 의해 제조된 $Li_xV_3O_8$을 사용한 $Li_xV_3O_8$SPE/Li cell의 방전시 cell 저항이 방전 초기에는 비소한 증가를 하다가 방전 말기 전압인 2.0V에서 크게 증가하였다. $Li_xV_3O_8$ composite 정극의 첫 번째 방전 용량은 295㎃h/g이었으며 8번째 충방전 싸이클부터 방전 용량이 안정화 되었고 15번째 방전 용량도 212㎃h/g으로 고체 전지용 정극으로써 우수한 특성을 보였다.

  • PDF

Improvement of Electrochemical Performance of KVO3 as High Capacity Negative Electrode Material for Lithium-ion Batteries (리튬이온 이차전지용 고용량 KVO3 음극의 전기화학적 성능개선)

  • Kim, Tae Hun;Gim, Gyeong Rae;Park, Hwandong;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.148-154
    • /
    • 2019
  • Vanadium oxide based materials have been studied as novel negative electrode materials in lithium-ion batteries (LIBs) because of their high specific capacity. In this study, potassium metavanadate ($KVO_3$) was synthesized and its electrochemical properties are evaluated as a negative electrode materials. The aqueous solution of $NH_4VO_3$ is mixed with a stoichiometric amount of KOH. The solution is boiled to remove $NH_3$ gas and dried to obtain a precipitate. The obtained $KVO_3$ powders are heat-treated at 300 and $500^{\circ}C$ for 8 h in air. As the heat treatment temperature increases, the initial reversible capacity decreases, but the cycle performance and Coulombic efficiency are improved slightly. On the contrary, the electrochemical performances of the $KVO_3$ electrodes are greatly improved when a polyacrylic acid (PAA) as binder was used instead of polyvinylidene fluoride (PVDF) and a fluoroethylene carbonate (FEC) was used as electrolyte additive. The initial reversible capacity of the $KVO_3$ is 1169 mAh/g and the Coulombic efficiency is improved to 76.3% with moderate cycle performance. The $KVO_3$ has the potential as a novel high-capacity negative electrode materials.

Accelerated Degradation Test of Electrolyte Membrane in PEMFC Stack (고분자 전해질 연료전지 스택에서 전해질막의 열화 가속시험)

  • Jeong, Jaejin;Lee, Sehoon;Lee, Hyeri;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.6-10
    • /
    • 2016
  • Until a recent day, degradation of PEMFC (Proton Exchange Membrane Fuel Cells) has been mainly studied in unit cell. But operation and degradation of real PEMFC going along in stack instead of unit cell. Therefore in this work, ADT (Accelerated Degradation Test) of PEMFC was done in stack and the result from stack's test was compared with that of unit cell. The polymer electrolyte membrane was degraded by repeated electrochemical and mechanical degradation method among several ADT methods. Current densities of MEA at 0.6V decreased in stack and unit cell, 28.4% and 27.8% respectively after ADT for 312 hours. Hydrogen crossover current densities of membrane increased in stack and unit cell, 16.8% and 15.2% respectively after ADT for 312 hours. The result of ADT in stack was similar that of ADT in unit cell, which showed that ADT method of unit cell was available to the stack.

A Study on the Standard Cell and Its Enclosure (표준전지 및 표준전지 항온함 제작에 관한 연구)

  • Euijin Hwang;Hwashim Lee;Jinuk Lee;Hong Yol Kang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.857-863
    • /
    • 1992
  • Acid type saturated Weston cells that can be used as the standard of electromotive force unit were constructed and their characteristics in a specially designed enclosure were evaluated. Cadmium sulfate was purified by recrystallization under vaccum. Mercurous sulfate with dispersed mercury and the exact composition of cadmium amalgam were obtained by means of electrolysis. The enclosure was constructed using a commercial circulator. Temperature of the enclosure was only drifted in the range of ${\pm}$5 mK in the case of extreme change of room temperature. The electromotive force of standard cells was measured over the temperature range of 5∼${\sim} 30^{\circ}C$. The standard deviation of the electromotive forces was about 1 ppm.

  • PDF

Long Organic Cation-modified Perovskite Solar Cells with High Efficiency and Stability (알킬 사슬이 긴 유기 양이온이 도입된 고효율/고안정성 페로브스카이트 태양전지)

  • Jung, Minsu
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.78-82
    • /
    • 2022
  • Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency (PCE) in 2020 from 3.8% in 2009 comparable to silicon photovoltacis. However, there remains important concern on the stability of perovskite solar cells under environmental conditions that should be solved prior to commercialization. In order to overcome the problem, we have introduced a small amount of octylammonium iodide with longer alkyl chain than volatile methylammonium iodide into MAPbI3 perovskites. The presence of octylammonium into perovskites were confirmed using Fourier-transform infrared spectroscopy and UV-visible spectroscopy. Moreover, octylammonium-modified perovskite solar cells showed a PCE of 16.6% and enhanced moisture stability with an increased contact angle of 72.2° from 57.0°. This work demonstrated the importance of perovskite compositional engineering for improving efficiency and stability.

태양전지모듈용 EVA의 가속 열화 메카니즘

  • Jeong, Jae-Seong;U, Dong-Jin;Park, No-Chang;Han, Chang-Un;Hong, Won-Sik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.49.1-49.1
    • /
    • 2011
  • 태양전지 모듈의 25년 이상 보증을 위해 태양전지 모듈을 구성하는 부품 소재의 신뢰성이 부각되고 있다. 현재까지 알려진 태양전지 모듈용 에틸렌 아세테이트 비닐(ethylene Vinyl Acetate, EVA)의 주요 열화 메카니즘은 황변(yellowing)과 박리(delaminaation)이다. 따라서 본 연구에서는 태양전지 모듈을 구성하는 재료 중 EVA 소재의 열화 메커니즘을 도출하기 위해 이미 알려진 스트레스 인자를 이용한 가속 열화시험을 설계한 후 가속열화시험을 실시하였으며, 이로부터 EVA의 열화 메카니즘을 규명하였다. 열화모드 재현을 위해 소형 태양광 모듈을 제작하였으며, Weather-Ometer를 이용하여 열화시험을 수행하였다. 시험조건은 4종 Phase가 1 사이클이 되도록 실험하였으며, Dark 조건 1 Phase 및 Light 조건 3 Phase 조건으로 실시하였다. 태양전지 모듈의 열화량은 매 500 사이클 마다 Light I-V 변화량을 측정하여 분석하였다. EVA의 물리 화학적 열화분석을 위해 단면분석, 적외선분광기(Fourier Transform-Infra Red, FT-IR) 및 주사전자현미경을 이용하여 열화 특성에 대한 분석을 실시하였고, 이를 근거로 EVA의 열화 메커니즘을 규명하였다.

  • PDF

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

A Review on Electrochemical Model for Predicting the Performance of Lithium Secondary Battery (리튬이차전지 성능 모사를 위한 전기화학적 모델링)

  • Yang, Seungwon;Kim, Nayeon;Kim, Eunsae;Lim, Minhong;Park, Joonam;Song, Jihun;Park, Sunho;Appiah, Williams Agyei;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • As the application area of lithium secondary batteries becomes wider, performance characterization becomes difficult as well as diverse. To address this issue, battery manufacturers have to evaluate many batteries for a longer period, recruit many researchers and continuously introduce expensive equipment. Simulation techniques based on battery modeling are being introduced to solve such difficulties. Various lithium secondary battery modeling techniques have been reported so far and optimal techniques have been selected and utilized according to their purpose. In this review, the electrochemical modeling based on the Newman model is described in detail. Particularly, we will explain the physical meaning of each equation included in the model; the Butler-Volmer equation, which represents the rate of electrode reaction, the material and charge balance equations for each phase (solid and liquid), and the energy balance. Moreover, simple modeling processes and results based on COMSOL Multiphysics 5.3a will be provided and discussed.

Recycling of Portable Secondary Batteries (소형 2차전지의 재활용)

  • Kim Hyun-Soo;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.77-81
    • /
    • 2001
  • Recently, used batteries are causing an environmental contamination and a waste of limited resources with increasing demand of portable secondary batteries in market. In developed countries, their governments have legally required the manufacture to collect and recycle the used batteries, so the related companies have formed an organization for collecting the used batteries and they are effectively recycling them. Unfortunately, an infrastructure for collecting and recycling the used batteries are not established at home yet, while volume of the used batteries are increasing. Therefore, we need an effective measure to ensure the recycling of the used batteries as soon as possible.