천연가스를 화학적 전환에 의해 부가가치를 높이기 위해서는 리포밍에 의해 합성가스(CO/H2)를 경유하는 간접전환경로가 현재로서는 가장 현실적인 방법이라 할 수 있다. 천연가스를 이용한 합성가스 제조기술은 수증기개질법(SRM), 이산화탄소 개질법(CDR, dry reforming), 부분산화법, 촉매 부분 산화법, 자열개질법 등으로 구분되며, 최근에는 각각의 제조방법의 장점을 고려하여 혼합개질법 또는 일련의 리포머 조합 방법이 개발되고 있다. CDR은 촉매 하에서 메탄과 이산화탄소의 직접접촉에 의해 반응이 일어나며, 수소와 일산화탄소의 비가 같은 합성가스가 제조된다. SRM에 비하여 고온에서 반응이 일어나고 전환율이 더 낮으므로 에너지 소비가 상대적으로 높다. 하지만, SRM과 함께 사용하면 합성가스 비율을 F-T합성이나 메탄올 합성에 적절한 비율로 조절이 가능한 장점이 있으며, 온실가스를 저감시킬 수 있는 전환기술로도 각광받고 있다. 본 발표에서는 최근의 CDR을 이용한 가스로부터 합성석유(GTL)와 메탄올을 고효율로 생산하는 기술 개발 동향에 대해서 소개하고자 한다.
전기적인 장치를 필요로 하는 분야의 빠른 발전에 따라 그 기본이 되는 에너지 저장소자에 관한 연구가 많은 관심을 불러일으키고 있다. 특히, 다양한 에너지 저장 소자 중 기존의 배터리 보다 높은 에너지 밀도와 빠른 충전/방전 속도, 그리고 상대적으로 긴 수명을 가진 슈퍼커패시터에 관한 연구가 많이 이루어 지고 있다. 나노구조를 가진 슈도용량성 물질을 전극에 합성시키는 방법은 크게 두 가지로 나눌 수 있는데 수열합성법이나 전기화학적증착 방법 같이 인위적인 바인더를 사용하지 않고 직접 전극 표면에 합성시키는 방법이 있고, copecipitation이나 졸겔 방법으로 나노구조를 합성한 후 인위적인 바인더를 사용하여 전극 표면에 합성 시키는 방법이 있다. 본 연구에서는 짧은 시간에 물질을 합성시킬 수 있고 인위적인 바인더를 사용하지 않아 더욱 뛰어난 전기적인 특성을 보이는 전기화학적증착 방법을 이용하여 spherically shaped CuO를 전도성 직물에 직접 합성시켜 전기적인 특성을 연구하였다. 유연한 전도성 직물에 합성된 spherically shaped CuO 는 뛰어난 전기화학적 가역성, 상대적으로 높은 비정전용량, 그리고 많은 사이클 테스트에서도 높은 안정성을 보였다. 이처럼 손쉬운 방법으로 유연한 전도성 직물에 합성된 metal oxide 나노구조는 슈퍼커패시터 뿐만 아니라 염료감응형 태양전지, 다양한 종류의 센서 등 많은 분야에서 활용될 것으로 기대된다.
현재 유일하게 AIDS 치료제로 허가된 AZT를 비롯하여 항 virus 효과를 나타내는 약물의 대부분은 구조적으로 Nucleoside계에 속하는 화합물로서 수많은 약리학적 연구 및 합성 화학적 연구가 이루어져 왔다. 특히 합성 화학적 측면에서 이들 화합물의 합성은 크게 두 가지로 나누어지는데 그것은 Sugar 부위의 변형을 통한 방법과 염기 부위의 변형을 통한 방법에 의해 새로운 항 바이러스제를 개발하는 것이다. 최근의 연구 동향에 있어서 주목할 만한 변화의 하나는 Sugar 부위의 구조적 변형을 시도하는데 있어서 종래의 5원환 형태에서 환이개열된 형태의 Acyclic Nucleoside에 대한 연구가 이루어져 좋은 효과를 거두고 있다는 사실이다. Acyclovir, Ganciclovir 등의 개발이 그것이다. 본 연구에서는 이와 같은 Acyclic Nucleoside계의 새로운 항 virus제를 합성하여 그 생리 활성을 검색하고자 한다.
ZnO 는 톡특한 물리적 화학적 성질을 가지고 있는 반도성 물질이기 때문에 최근 광전자 소자인 LED, TFT, 광센서 등에 적용하려는 연구가 많은 관심을 받고 있다. 특히 1차원 ZnO 나노구조는 박막보다 높은 결정성과 물리, 화학적으로 안정하고 표면적이 매우 넓어 많은 연구가 진행되고 있지만, 대량으로 간단하며 저렴하게 생산하기 위해서 친환경적이며 적은 시간으로 합성을 해야 한다. 그래서 최근 수열 합성법을 이용하여 합성이 많이 이루어지고 있지만, ZnO 나노막대 제조 중 기존에 보고된 방법은 대부분 aspect ratio가 낮으며, 저가의 용액 기반으로 높은 aspect ratio를 가지는 나노 선을 제작하기 어려운 실정이다. 또한 용액기반의 성장에서는 기판과의 격자 상수와 열팽창 계수의 차이로 인해 기판과의 adhesion 이 매우 낮아 adhesion layer를 증착 하여 나노 막대을 제작하는 것이 발표가 되고 있다. 하지만 또 하나의 공정이 더해지기 때문에 복잡해지고, 소자에 응용하기에는 한계점이 보인다. 그렇기 때문에 이번 연구에서는 성장 시 Zn 소스가 소모가 다 되었을 시 성장 용액을 교체하는 과정에서 성장 온도와 같이 유지 시킨 뒤에 성장을 하는 방법으로 수직 방향으로 10 um 의 길이를 가지는 ZnO 나노막대의 합성을 가능하게 하였다.
최근 정보·전자산업의 발전으로 고 신뢰성 전자재료에 대한 수요가 증대되고 있으며 이러한 첨단산업의 기반의 될 신소재 중 전자세라믹스가 차지하는 비중이 그 대부분을 차지하고 있으며 이에 대한 수요와 기대가 점점 커지고 있다. 이러한 전자세라믹스는 유전재료, 자성재료, 압전재료, 도전성 재료 등으로 나뉘게 된다. 어떠한 분류에 들어가든 그 조성은 금속의 산화물 형태가 일반적이며 미세한 분말의 성형체를 소결(sintering) 함으로써 최종제품으로 완성된다. 이러한 전잣라믹스가 최근 요구되는 고 신뢰성, 고 밀도화를 달성하기 위해선 원료 분말 제조단계부터 제어가 필요하다. 원료분말의 균일·균질성과 그 입도는 소결특성 뿐만아니라 전기적 특성에도 큰 영향을 미치기 때문이다. 세라믹스의 분말제조 방법 중 일반적으로 사용되는 방법으로는 고상 산화물을 혼합하여 하소(calcination)한 후 분쇄하는 '고상합성법'과 금속의 염 또는 alkoxide 용액을 이용하여 화학적으로 제조하는 '습식 화학적 합성법'이 있다. 고상합성법은 합성온도가 높고 기계적 분쇄와 혼합에 의존하므로 균일·균질성이 떨어지고 분말크기를 1㎛ 이하로 만들기 힘들다. 반면에 습식화학적 합성법은 기계적인 분쇄와 혼합에선 얻을 수 없는 원자 혹은 분자단위의 균일한 혼합과 submicron 이하의 미세한 분말을 얻을 수 있다. 따라서 이러한 습식 화학적 합성으로 얻은 분말을 사용하면 미세한 입자의 특성으로 인해 소결온도를 낮출 수 있으며 균일한 미세구조와 균질한 조성을 갖게되어 기계적·전기적 물성증진도 가져올 수 있게 된다. 습식 화학적 분말합성법은 전술하였듯이 alkoxide의 가수분해를 이용하는 sol-gel 법과 금속의 염(salt) 용액을 이용하여, 화학적으로 화합물 침전을 얻거나 또는 공침전물(coprecipitate) 형태의 분말을 얻는, 침전법으로 나뉠 수 있다. 침전법의 근본원리는 pH 및 pCO3 등에 따른 이온종의 용해도 차이를 이용하는 것으로써 각 이온종에 따른 solubility product(ksp)를 이용하여 설명된다. 본 연구에서는 침전법을 사용한 Ba-, Pb-계 전자세라믹스의 분말합성에 대한 이론적 고찰과 공정개발 및 실험을 통한 물성증진 효과에 대해 알아보았다. 본 실험상의 전자세라믹스 조성은 강유전체, 세라믹반도체, 압효과에 대해 알아보았다. 본 실험상의 전자세라믹스 조성은 강유전체, 세라믹 반도체, 압전재료로 널리 사용되는 BaTiO3, PZT(PbZrO3-PbTiO3)와 수직 자기기록매체로 큰 가능성이 있으며 hard ferrite로 널리쓰이는 Ba-feerite(BaFe12O19)로써 수산화물 형태의 침전에 대한 기구(mechanism)와 물성에 대해 살펴보았다. 이러한 침전법에 의한 분말합성 과정에는 소결체의 물성에 영향을 미치는 pH 조절제나 원료에서 혼입될 수 있는 Na+, K+, Cl-, SO4- 등의 제거(washing 혹은 filtering)가 필수적이다. 그러나 침전법에서 얻게 되는 분말은 매우 미세하여 colloid를 형성하게 되며, 이러한 colloid 상태의 미세한 침전입자가 filtering media에 끼이게 되어 견고하면서도 상당한 부피를 가지는 filter cake을 형성하기 때문에 filtering에 많은 시간과 다량의 filtering agent (본 실험의 경우엔 증류수)가 필요하게 된다. 따라서 이러한 문제점을 해결하기 위하여 colloid 상태의 침전물을 얼렸다 녹이는 freezing process를 개발, 적용하여 그 원리 및 효과, 그로인한 분말형태를 관찰하여 보았다.
그래핀(Graphene)은 한 겹(layer)의 2차원 판상 구조에 탄소원자들이 육각형의 기본 형태로 배열되어 있는 나노재료로서, 우수한 역학적 강도와 화학적, 열적 안정성 및 흥미로운 전기 전자적 성질을 가지고 있는 것으로 알려져 있다. 최근, 이러한 특징적이고도 우수한 물성으로 인하여 기초물성 연구에서부터 차세대 응용까지 고려한 각종 연구들이 활발하게 진행되고 있다. 일반적으로 그래핀을 얻는 방법에는 물리 화학적 박리, 열화학증기증착법(TCVD), 탄화규소의 흑연화, 흑연산화물의 환원 등의 방법들이 알려져 있다. 그 중 TCVD법이 두께의 균일성이 높은 그래핀을 합성하는데 가장 적절한 것으로 알려져 있다. 그러나 TCVD법은 탄소를 포함하는 원료가스를 분해하기 위하여 고온의 공정을 필요로 하게 되지만, 향후 산업적 응용을 고려한다면 대면적 그래핀의 저온합성법 개발은 풀어야 할 시급한 과제로 인식되고 있다. 현재는 메탄을 원료가스로 사용하여 $900^{\circ}C$ 이상에서 그래핀을 합성하는 추세이고, 최근 아세틸렌등의 활성원료가스를 이용하여 $900^{\circ}C$ 이하에서 저온 합성한 연구결과들도 속속 보고되고 있다. 본 연구에서는 고주파 플라즈마를 이용하여 비교적 저온에서 탄소원료가스를 효율적으로 분해하고, 확산플라즈마 영역에 TCVD 챔버를 결합한 하이브리드 화학증기증착법을 이용하여 그래핀의 저온합성을 도모하였다. 원료가스로는 메탄을 사용하였고, 기판으로는 전자빔증착법으로 증착한 니켈 박막 및 구리포일을 사용하였다. 실험결과, 그래핀은 $600^{\circ}C$ 부근의 저온에서도 수 층으로 이루어진 그래핀이 합성된 것을 확인하였다. 합성한 그래핀은 분석의 용이함 및 향후 다양한 응용을 위하여 실리콘산화막 및 투명고분자 기판 위에 전사(transfer)하였다. 합성된 그래핀의 구조평가를 위해서는 광학현미경과 Raman분광기를 주로 사용하였으며, 원자힘현미경(AFM), 주사전자현미경(SEM), 투과전자현미경(TEM) 등도 이용하였다.
벤질알코올의 전기화학적 산화를 통해 𝛽-hydroxynitrile과 𝛽-ketonitrile을 합성하였다. 이 생성물은 용매인 아세토나이트릴이 전기화학적으로 환원되어 생성된 아세토나이트릴 음이온과 벤질알코올이 산화된 벤즈알데하이드의 첨가반응을 통해 생성되었을 것이라고 예상된다. 그리고 20 mA의 전류를 3 h 인가하였을 때, cyanomethylation를 통해 생성된 𝛽-hydroxynitrile이 전기화학적으로 산화되어 최종적으로 𝛽-ketonitrile이 합성됨을 확인하였다. 본 연구에서는 상온에서 가장 범용적으로 사용되는 백금 전극을 이용하여 벤질알코올을 전기화학적으로 𝛽-hydroxynitrile 또는 𝛽-ketonitrile로 합성하는 것이 가능한 것을 입증하였다.
금속 유기 골격체는 최근 20년간 센서, 촉매, 에너지 저장과 같은 많은 응용분야에서 관심을 받아온 물질이다. 이 물질을 합성하기 위해 수열 합성, 유기용매열과 같은 합성법이 제시되어 왔으나, 그 공정이 복잡하면서 고비용·장시간이 소요된다는 문제점이 제기되어 왔다. 이를 해결하기 위한 전기화학적 합성법이 새롭게 제시되었는데, 간단한 준비절차와 특정한 온도·압력 조건 없이 합성할 수 있어 기존 합성법의 단점을 보완한다는 특징이 있다. 이에 본 총설논문에서는 전기화학적으로 합성 가능한 금속 유기 골격체의 종류와 전기화학적 합성 메커니즘을 다루고 있다. 전기화학적 합성법을 통해 형성된 금속 유기 골격체를 적용한 응용분야 연구동향을 정리하였다.
초음파 조사 및 계면활성제 첨가에 따른 입자의 변화를 연구하기 위하여 침전법, 음향화학적 침전법 그리고 게면활성제를 첨가한 음향화학적 침전법으로 나노 입자를 합성하였고, X-선 회절실험을 통하여 마그네타이트가 합성된 것을 확인하였다. 침전법, 음향화학적 침전법으로 합성한 입자의 크기는 계면활성제를 첨가한 음향화학적 침전법으로 합성한 입자보다 크게 얻어졌고, 초음파 출력이 증가 할수록 크기는 증가하였다. 계면활성제로 올레인 산을 첨가한 음향화학적 기법에서는 게면활성제의 농도에 따라 입자 크기를 선택적으로 조절하여 합성할 수 있었고, 단순 침전법이나 음향화학적 기법에서 보다 생성되는 입자의 크기 분포가 좁게 나타났다. 마그네타이트 나노 입자들의 자기적 특성을 SQUID를 통하여 분석한 결과, 실온에서 모두 초상자성 거동을 보이는 것으로 나타났다.
n-Alkyloxy기를 가지는 4가지 종류의 서로 다른 benzilidene anhydrides (2a~d)를 4-(n-alkyloxy)benzaldehyde (1a,b)와 diethyl succinate와의 Stobbe condensation, 가수분해, 탈수고리화반응으로 이어지는 연속적인 반응을 통하여 성공적으로 합성하였다. 단량체의 화학적 구조를 분광학적 방법으로 분석하여 합성된 단량체 (2a~d)는 (Z,Z)-이성체로 존재함을 확인하였다. 중합은 질소분위기하 150~$210^{\circ}C$의 온도범위에서 괴상중합법으로 행하여졌다. 합성된 고분자의 화학적 구조와 열적 성질을 각각 분광학적 방법과 TGA, DSC를 이용하여 조사하였다. 합성된 고분자의 성질은 곁사슬의 길이에 따른 화학적 구조에 크게 의존함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.