Browse > Article
http://dx.doi.org/10.14478/ace.2022.1056

Electrochemical Synthesis of 𝛽-Hydroxynitrile by addition of Acetonitrile into Benzyl Alcohol  

Choi, Hyebin (Department of Chemistry, Gyeongsang National University)
An, Jaun (Department of Chemistry, Gyeongsang National University)
Kwon, Ki-Young (Department of Chemistry, Gyeongsang National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.4, 2022 , pp. 436-439 More about this Journal
Abstract
𝛽-Hydroxynitrile and 𝛽-ketonitrile were synthesized by the electrochemical oxidation of benzyl alcohol in an acetonitrile solvent. 𝛽-Hydroxynitrile was prepared by the reaction between benzaldehyde from the oxidation of benzyl alcohol and acetonitrile anion which was produced from the electrochemical reduction of acetonitrile. 𝛽-Hydroxynitrile was finally electrochemically converted into 𝛽-ketonitrile by applying 20 mA of current for 3 h. We demonstrated that 𝛽-hydroxynitrile or 𝛽-ketonitrile syntheses were prepared by electrochemical oxidation of benzyl alcohol with a commonly used Pt electrode at room temperature.
Keywords
Cyanomethylation; Electrooxidation; Tetrabutylammonium perchlorate; ${\beta}$-hydroxynitrile;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Suto, N. Kumagai, S. Matsunaga, M. Kanai, and M. Shibasaki, Direct catalytic aldol-type reactions using RCH2CN, Org. Lett., 5, 3147-3150 (2003).   DOI
2 P. Zhu, Y. Shen, L. Dai, Q. Yu, Z.-M. Zhang, and C. An, Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting, ACS Appl. Mater. Interfaces, 14, 1452-1459 (2022).   DOI
3 L. Ming, X.-Y. Wu, S.-S. Wang, W. Wu, and C.-Z. Lu, Facile growth of transition metal hydroxide nanosheets on porous nickel foam for efficient electrooxidation of benzyl alcohol, Green Chem., 23, 7825-7830 (2021).   DOI
4 I. Chiarotto, L. Mattiello, and M. Feroci, The electrogenerated cyanomethyl anion: An old base still smart, Acc. Chem. Res., 52, 3297-3308 (2019).   DOI
5 C. E. Dahm and D. G. Peters, Electrochemical reduction of tetraalkylammonium tetrafluoroborates at carbon cathodes in dimethylformamide, J. Electroanal. Chem., 402, 91-96 (1996).   DOI
6 T. V. Hughes, S. L. Emanuel, A. K. Beck, S. K. Wetter, P. J. Connolly, P. Karnachi, M. Reuman, J. Seraj, A. R. Fuentes-Pesquera, R. H. Gruninger, S. A. Middleton, R. Lin, J. M. Davis, and D. F. C. Moffat, 4-Aryl-5-cyano-2-aminopyrimidines as VEGF-R2 inhibitors: Synthesis and biological evaluation, Bioorg. Med. Chem. Lett., 17, 3266-3270 (2007).   DOI
7 S. A. Laufer, W. Zimmermann, and K. J. Ruff, Tetrasubstituted imidazole inhibitors of cytokine release: Probing substituents in the N-1 position, J. Med. Chem., 47, 6311-6325 (2004).   DOI
8 J. Hu, Y. Wei, and X. Tong, Phosphine-catalyzed [3 + 2] annulations of γ-functionalized butynoates and 1C,3O-bisnucleophiles: Highly selective reagent-controlled pathways to polysubstituted furans, Org. Lett., 13, 3068-3071 (2011).   DOI
9 A. Kamal, G. B. R. Khanna, and R. Ramu, Chemoenzymatic synthesis2 of both enantiomers of fluoxetine, tomoxetine and nisoxetine: lipase-catalyzed resolution of 3-aryl-3-hydroxypropanenitriles, Tetrahedron Asymmetry, 13, 2039-2051 (2002).   DOI
10 J. Shen, D. Yang, Y. Liu, S. Qin, J. Zhang, J. Sun, C. Liu, C. Liu, X. Zhao, C. Chu, and R. Liu, Copper-catalyzed aerobic oxidative coupling of aromatic alcohols and acetonitrile to β-ketonitriles, Org. Lett., 16, 350-353 (2014).   DOI
11 Y. Fukuda and Y. Okamoto, First total synthesis of (±)-AM6898A and (±)-AM6898D, Tetrahedron, 58, 2513-2521 (2002).   DOI
12 S. Kamila, D. Zhu, E. R. Biehl, and L. Hua, Unexpected stereo-recognition in nitrilase-catalyzed hydrolysis of β-hydroxy nitriles, Org. Lett., 8, 4429-4431 (2006).   DOI
13 R. Barhdadi, J. Gal, M. Heintz, M. Troupel, and J. Perichon, Aryl halides as precursors of electrogenerated bases: Utilization in coupling reactions of acetonitrile with various electrophilic compounds, Tetrahedron, 49, 5091-5098 (1993).   DOI
14 M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, and A. Inesi, Electrochemically promoted C-N bond formation from acetylenic amines and CO2: Synthesis of 5-methylene-1,3-oxazolidin-2-ones, J. Org. Chem., 70, 7795-7798 (2005).   DOI
15 G. Bianchi, M. Feroci, and L. Rossi, Reaction of the electrogenerated cyanomethyl anion with carbonyl compounds: A clean and safe synthesis of β-hydroxynitriles, Eur. J. Org. Chem., 2009, 3863-3866 (2009).   DOI
16 E. Y. Ko, C. H. Lim, and K. H. Chung, Additions of acetonitrile and chloroform to aromatic aldehydes in the presence of tetrabutylammonium fluoride, Bull. Korean Chem. Soc., 27, 432-434 (2006).   DOI
17 S. Lee, T. Kim, B. H. Lee, S. E. Yoo, K. Lee, and K. Y. Yi, 3-Substituted-(5-arylfuran-2-ylcarbonyl)guanidines as NHE-1 inhibitors, Bioorg. Med. Chem. Lett., 17, 1291-1295 (2007).   DOI
18 T. A. Farghaly, N. A. Abdel Hafez, E. A. Ragab, H. M. Awad, and M. M. Abdalla, Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives, Eur. J. Med. Chem., 45, 492-500 (2010).   DOI
19 S. Kamila, B. Koh, and E. R. Biehl, Microwave-assisted "green" synthesis of 2-alkyl/arylbenzothiazoles in one pot: A facile approach to anti-tumor drugs, J. Heterocycl. Chem., 43, 1609-1612 (2006).   DOI
20 S. Chakraborty, Y. J. Patel, J. A. Krause, and H. Guan, A robust nickel catalyst for cyanomethylation of aldehydes: Activation of acetonitrile under base-free conditions, Angew. Chem. Int. Ed., 52, 7523-7526 (2013).   DOI
21 H. Ankati, D. Zhu, Y. Yang, E. R. Biehl, and L. Hua, Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis, J. Org. Chem., 74, 1658-1662 (2009).   DOI
22 B. W. Yoo, S. K. Hwang, D. Y. Kim, J. W. Choi, J. J. Ko, K. I. Choi, and J. H. Kim, Indium-mediated coupling of bromoacetonitriles with aromatic acyl cyanides: Convenient synthesis of aromatic α-cyano ketones, Tetrahedron Lett., 43, 4813-4815 (2002).   DOI