• Title/Summary/Keyword: 화학개념이해

Search Result 190, Processing Time 0.028 seconds

Analysis of Types on Osmotic Pressure and Semipermeable Membrane Concept in Chemistry and Biology Textbooks (화학과 생물 교과서에서 삼투압과 반투막 개념에 관한 설명 유형 분석)

  • Ko, Young-Hwan;Kang, Dae-Hun;Ryu, Oh-Hyun;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.444-454
    • /
    • 2002
  • In this study, we analyzed the explanation of the concepts related to osmotic pressure and semipermeable membrane that were represented in chemistry and biology textbooks of high school and general course of college. There were 4 types of explanation in osmotic pressure and 3 types of semipermeable membrane concept. Students can understand the concepts with different meaning because there are different viewpoints on the explanations of the concepts. We must consider the various types of explanation when we design science textbooks because these confusions disturb students' understanding of the concepts.

A Case Study of Chemistry Major Pre-service Teacher's Understanding about the Properties of Dilute Solutions and Perception on Teacher Education Curriculum (묽은 용액의 성질에 대한 화학전공 예비교사들의 이해 및 화학교사 양성교육에 대한 인식 사례 연구)

  • Lee, Song-Yeon;Kim, Soeng-Hye;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.787-798
    • /
    • 2010
  • We compared the understanding of 4 pre-service teachers of chemistry education major and 2 pre-service teachers of chemistry major related to conceptions of "properties of dilute solutions" chapter in high school Chemistry II textbooks. As results, few pre-service teachers understood fully the concepts of high school Chemistry II textbooks. Some pre-service teachers had misconceptions related to properties of dilute solutions. We found that few differences existed between the pre-service teachers' understanding regardless of whether they took a major in chemistry education of a education college or a major in chemistry of noneducation college. Most of the pre-service teachers who attended this research recognized the lack of practical knowledge in their pre-service teacher curriculum.

Analysis of Preservice Chemistry Teachers' Modelling Ability and Perceptions in Science Writing for Audiences of General Chemistry Experiment Using Argument-based Modeling Strategy (논의-기반 모델링 전략을 이용한 일반화학실험에서 글쓰기 대상에 따른 예비화학교사들의 모델링 능력 및 모델링에 대한 인식 분석)

  • Cho, Hye Sook;Kim, HanYoung;Kang, Eugene;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.459-472
    • /
    • 2019
  • The purpose of this study was to investigate the effect of science writing for different audiences on preservice chemistry teachers' chemistry concept understanding and modeling ability in general chemistry experiment activities using Argument-based Modeling (AbM) strategy. And we also examined preservice chemistry teachers' perceptions of modeling in different audience groups. The participants of the study were 18 university students in the first grade of preservice chemistry teachers taking a general chemistry experiment course. They completed eleven topics of general chemistry experiment using argument-based modeling strategy. The understanding of chemistry concept was compared with the effect size of pre- and post-chemistry concept test scores. To find out modeling ability, we analyzed level of model by each preservice chemistry teacher. Analytical framework for the modeling ability was composed of three elements, explanation, representation, and communication. The questionnaire was conducted to check up on preservice chemistry teacher's recognition of modeling. The result of analyzing the effect of modeling for different audience on the understanding of chemistry concept and modeling ability, the preservice chemistry teachers' were found to be more effective when the level of audience was low. There was no difference in the recognition of modeling between the groups for audience. However, we could confirm that the responses of preservice chemistry teachers are changed in concrete when they have an experience in succession on modeling.

Research of Pre-Service Science Teachers' Understanding About the Chemistry Concept and Analysis of Incorrect Responses: Focus on Middle School Curriculum (예비 과학교사의 화학 개념에 대한 이해도 조사와 오답 반응 분석: 중학교 교육과정을 중심으로)

  • Lee, Hyun-Jeong;Choi, Won-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.1030-1041
    • /
    • 2011
  • We investigated the understanding of pre-service science teacher about the chemistry concept of middle school curriculum using some items in National Assessment of Educational Achievement and analyzed the result according to background variables of pre-service science teacher. The result was that there were some pre-service science teachers who select incorrect answer at all items, pre-service science teachers don't fully understand the concept needed to solve item. And the percentage of correct answer at some items was low regardless of selection of chemistry as an elective subject at CSAT(College Scholastic Ability Test). We found some facts through the depth interviews to find the cause of the result. First, the misconception acquired in middle school days is tend not to change until college student. Second, the formation of misconception is affected by the study habit with which solve problem by simple calculation and memory without essential understanding. Third, the study habit with which solve problem by simple calculation and memory without essential understanding could not replace misconceptions acquired in middle school days with scientific concept regardless of selection of chemistry as an elective subject at CSAT.

A Study of High School Students' Conceptions of Mixing Phenomena Related to Dissolution and Diffusion (용해.확산과 관련된 혼합현상에 대한 고등학생들의 개념 유형 분석)

  • Hur, Mi-Youn;Jeon, Hey-Sook;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • The purpose of this study was to investigate the types of conceptions of mixing phenomena related to dissolution and diffusion in high school students. The subjects of the investigation consisted of 108 students who took chemistry I course at 11th grade and 29 students who took chemistry II course at 12th grade. For this study, it was found that the many students had the alternative conception that chalk didn't dissolve in water because chalk was a nonpolar material. Most of the students understood the phenomena which carbon tetrachloride and water will not mix as the attraction conception. But many of the other students understood the phenomenon as characteristic of the materials such as difference of density. Many of the students understood the phenomenon of mixing ethanol and water constantly as ‘Attraction conception'. The phenomenon which is mixed ink and water was just accepted by the most students as the spreading of ink in water without understanding the reason of mixing. The phenomena of mixing iodine and carbon tetrachloride was understood as ‘Space conception' or ‘Attraction conception'. It could be inferred that the diverse alternative conceptions related to dissolution and diffusion phenomena were generated by the absence of entropy concept. Therefore, the explanations of science textbooks related to dissolution and diffusion phenomena need to change for students to understand them correctly.

The Effects of Concept Mapping Strategy in the Undergraduate General Chemistry Course (대학 일반 화학 수업에서 개념도 활용 전략의 효과)

  • Koh, Han-Joong;Doh, Eun-Jeong;Kang, Suk-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.186-192
    • /
    • 2007
  • In this study, the effects of concept mapping on the preservice elementary teachers' achievement, conceptual understanding, anxiety toward science, and science teaching efficacy belief were investigated in the undergraduate general chemistry course. The aptitude-treatment interaction (ATI) between preservice teachers' learning approach and concept mapping strategy was also investigated. Sixty-nine freshmen from a university of education were assigned to a control group and a treatment group. Tests regarding students' learning approach, anxiety toward science, and science teaching efficacy belief were administered as pretests. Treatment lasted for 9 weeks. In every class, students in the treatment group constructed concept maps, while those in the control group solved the problems of the textbook after the lecture. After the instructions, tests of achievement, conceptual understanding, anxiety toward science, and science teaching efficacy beliefs were administered. The results indicated that students in the treatment group significantly outperformed those of the control group in the achievement test. In the conceptual understanding and the science teaching efficacy beliefs, however, no statistically significant differences were found between two groups. Students of the treatment group showed significantly higher anxiety than their counterpart in the test of anxiety toward science. No aptitudetreatment interaction between students' learning approach and the concept mapping strategy was found.

The Influence of the Systematic Analogies Used at the Interpretation of Experimental Results on High School Students' Conceptual Change of Enzymes (실험 결과 해석 과정에서 사용한 체계적 비유가 고등학생들의 효소 개념 변화에 미친 영향)

  • Lee, Won-Kyung;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.7
    • /
    • pp.663-675
    • /
    • 2007
  • Chemical reactions in cells are so complicated and abstract that students have difficulty in understanding them. In this study, classes with the application of systematic analogies used at the interpretation of experimental results were taught to 10th-grade students in order to help them to understand the concept of enzymes, which play an important role in chemical reactions in cells. Effects of the classes on their understanding of the concept of enzymes and the role of systematic analogies were analyzed. The gap of understanding between the test group and the control group was significant at 0.05, indicating that systematic analogies are effective for students' understanding of the concept of enzymes. Looking into the concept of enzymes by individual element, the effect of systematic analogies was shown to be large for equilibrium-like processes, such as the enzyme structure change caused by temperature and pH; and the continuous and random actions of enzymes, which students have difficulty in understanding. For these processes, systematic analogies played a positive role in improving their conceptual status. The visualizations and familiarity of analogs increased their intelligibility regarding the concept of enzyme. Also, the systematic analogies increases their plausibility by helping to connect phenomena, taking place in the enzyme reaction experiments, with scientific concepts as scaffold. Accordingly, it was possible to explain experimental results as scientific concepts in a consistent manner. In addition, analogies familiar to students played a positive role from the affective perspective by promoting students' interest and helping them to approach hard scientific concepts.

Effects of Students' Learning Motivations on Concept Change (학습 동기에 따른 학습자의 개념 변화 효과)

  • Paik, Seoung-Hey;Kim, Hyeg-Kyong;Chae, Woo-Ki;Kwon, Kyoon
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.1
    • /
    • pp.91-99
    • /
    • 1999
  • The researches related to students' preconceptions and conceptual change model have been reported that students' learning motivation is one of the key variable for the conceptual change. The effects of students learning motivations on conceptual changes were evaluated. Subjects of this study were 8th grade students. and they were divided into 2 groups. One group was taught by traditional teaching method, and the other group by concept change teaching model. After the intervention, learning motivations of the students were testified. The students of high motivation who were taught by concept change teaching model showed higher scores in the concept of chemical change than the students by traditional teaching method. But there was no difference in both groups of students who have low learning motivations. The learning motivations before the intervention. the motivations stimulated by classes. and the degree of concept understanding showed high correlation. The motivations stimulated by classes explain 23.3 % of the degree of concept understanding. The results seems to mean that students learning motivations contribute to the understanding of concepts. Especially confidence of learning as a subcategory of the learning motivation contributes significantly to the understanding of new concepts. In contrast, the traditional teaching methods and the teaching methods of concept change learning theory were not effective for the stimulation of students learning motivations.

  • PDF

An Investigation on High School Students' Chemistry-Related Environmental Conceptions and Environmental Attitudes (고등학생들의 화학 관련 환경 개념 및 환경에 대한 태도 조사)

  • Han, Jae-Young;Kang, Suk-Jin;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.2
    • /
    • pp.344-352
    • /
    • 2000
  • In this study, high school students' environmental conceptions and attitudes, and their relationships with affective variables (self-esteem, enjoyment of science lesson, and leisure interest in science) were investigated. Students' environmental conceptions were found to be low, and male students' environmental conceptions were higher than female students. However, the environmental attitudes of female students were more positive than those of male students. There were no differences between male and female students in the ecocentric attitudes, but male students had more egocentric attitudes than female students. Students of higher prior science achievement level possessed higher level of environmental conceptions than their counterparts. Among the affective variables studied, leisure interest in science was significantly correlated with environmental attitudes.

  • PDF

Examining the Concept of Matter in the 7th National Science Curriculum (제7차 과학과 교육과정에서 물질 개념에 대한 고찰)

  • Hong, Mi-Young;Jeon, Kyung-Moon
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • The purpose of this study was to examine the 7th national science curriculum (chemistry domain) regarding the meanings of ‘mulgil' (Korean), the particulate nature of matter, and the state of matter. It was found that the term of ‘mulgil' was being used vaguely as representing material, matter, or substance without clear definition. This was problematic by reason that it could hinder students from having the concept of substance. Regarding the particulate nature of matter, molecule was introduced as a basic unit of matter at grade 7, prior to atom and ion, which were introduced at grade 9 and 10, respectively. It is necessary to reconsider the sequence of each particle concept to provide students with more consistent and comprehensive understanding of structure of matter. In the case of change of state, key concepts such as conservation of matter or reversibility were omitted in the curriculum document, and explanations based on various aspects of particles were somewhat insufficient. The concept of matter is fundamental to chemistry, and we must recognize it as a concept that needs to be taught clearly. Implications for curriculum revision were discussed.