The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.8C
/
pp.1125-1132
/
2004
In this Paper, we Propose an effective boundary matching based error detection algorithm using causal neighbor blocks to improve video quality degraded from channel error in block-coded video. The proposed algorithm first calculates boundary mismatch powers between a current block and each of its causal neighbor blocks. It then decides that a current block should be normal if all the mismatch powers are less than an adaptive threshold, which is adaptively determined using the statistics of the two adjacent blocks. In some experiments under the environment of 16bi1s burst error at bit error rates (BERs) of 10$^{-3}$ -10$^{-4}$ , it is shown that the proposed algorithm yields the improvements of maximum 20% in error detection rate and of maximum 3.5㏈ in PSNR of concealed kames, compared with Zeng's error detection algorithm.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.2
/
pp.31-39
/
2003
The MPEG-2 source coding algorithm is very sensitive to transmission errors due to using of variable-length coding. When the compressed data are transmitted, transmission errors are generated and error correction scheme is not able to be corrected well them. In the decoder error concealment (EC) techniques must be used to conceal errors and it is able to minimize degradation of video quality. The proposed algorithm is method to conceal successive macroblock errors of I-frame and utilize temporal information of B-frame and spatial information of P-frame In the previous GOP which is temporally the nearest location to I-frame. This method can improve motion distortion and blurring by temporal and spatial errors which cause at existing error concealment techniques. In network where the violent transmission errors occur, we can conceal more efficiently severe slice errors. This algorithm is Peformed in MPEG-2 video codec and Prove that we can conceal efficiently slice errors of I-frame compared with other approaches by simulations.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.4
/
pp.15-22
/
2003
A film scanner is one of the input devices for ac acquiring high resolution and high qualify of digital images from the existing optical film. Recently the demand of film scanners have risen for experts of image printing and editing fields. However, due to the nonlinear characteristic of light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction for the scanned digital image is essential in film scanner. In this paper, neural network method is applied for the color correction to CIE L/sup *//a/sup *//b/sup */ color model data converted from RGB color model data. Also a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi is implemented by using the TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color correction rate is 79.8%, which is an improvement of 43.5% than our previous method, polygonal regression method.
In this paper, we propose the receiver block error detection of the video codec and the image concealment algorithm using fuzzy inference. The proposed error detection and concealment algorithm gets SSD(Summation of Squared Difference) and BMC(Boundary Matching Coefficient) using the temporal and spatial similarity between corresponded blocks in the two successive frames. Proportional constant, ${\alpha}$, for threshold value, TH1 and TH2, is decided after fuzzy data is generated by each parameter. To examine the propriety of the proposed algorithm, random errors are inserted into the QCIF Susie standard image, then the error detection and concealment performance is simulated. To evaluate the efficiency of the algorithm, image quality is evaluated by PSNR for the error detection and concealed image by the existing VLC table and by the proposed method. In the experimental results, the error detection algorithm could detect all of the inserted error, the image quality is improved over 15dB after the error concealment compare to existing error detection algorithm.
Journal of the Institute of Electronics and Information Engineers
/
v.49
no.9
/
pp.128-137
/
2012
When a CCD camera acquires images in the low light level environment, not only the image signals but also noise components are amplified by the AGC (auto gain control) circuit. Since the noise level in the images acquired in the dark is very high, it is difficult to remove noise with existing denoising algorithms that are targeting the images taken in the normal light condition. In this paper, we proposed an adaptive denoising algorithm that can efficiently remove significant noises caused by the low light level. First, the window including a target pixel is transformed to the frequency domain. Then the algorithm compares the characteristics of equally divided four frequency bands. Finally the noises are adaptively removed according to the frequency characteristics. The proposed algorithm successfully improves the quality of low light level images than the existing algorithms do.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.1
/
pp.165-170
/
2015
The unsharp mask technique emphasize the boundary of the image by adding the boundary of the original image. This technique improves quality by emphasize its boundaries but produce rough image from image noise. The multi channel unsharp mask is possible to enhance entire contrast of the image by applying at least two channels of unsharp mask. However, There is limitations to strengthen boundaries even if the scale strongly applies the multi channel unsharp mask technique. To solve this problem, linear scaling to nonlinear scaling by applying exponential function to existing multi channel unsharp mask technique. Experimental results show enhanced contrast for desired area because of control scaling in details compared with existing unsharp mask technique.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.38
no.5
/
pp.498-508
/
2001
In this paper, we propose an efficient coding algorithm for the zoom images to find the optimal depth and texture information. The proposed algorithm is the area-based method consisting of two consecutive steps, i) the depth extraction step and ii) the texture extraction step. The X-Y plane of the object space is divided into triangular patches and the depth value of the node is determined in the first step and then the texture of the each patch is extracted in the second step. In the depth extraction step, the depth of the node is determined by applying the block-based disparity compensation method to the windowed area centered at the node. In the second step, the texture of the triangular patches is extracted from the zoom images by applying the affine transformation based disparity compensation method to the triangular patches with the depth value extracted from the first step. To improve the quality of image, the interpolation is peformed on the object space instead of the interpolation on the image plane.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.38
no.2
/
pp.149-159
/
2001
The conventional block-based motion prediction suffers, especially in low bit-rate video application, from shortcomings such as blocking artifacts of motion field and unstable motion estimation. To overcome the deficiency, this paper proposes one method of adopting a new motion compensation scheme based on the irregular triangular mesh structure while keeping the current block-based DCT coding structure of H.263 as much as possible. To represent the reconstructed previous frame using minimal number of control points, the proposed method designs content-adaptive irregular triangular meshes, and then, estimate the motion vector of each control point using the affine transformation-based matching. The predicted current frame is obtained by applying the affine transformation to each triangular mesh. Experiment with the several real video sequences shows improvement both in objective and subjective picture quality over the conventional block-based H.263 method.
Recently, many deep convolutional neural networks for image super-resolution have been studied. Existing deep learning-based super-resolution algorithms are architecture that up-samples the resolution at the end of the network. The post-upsampling architecture has an inefficient structure at large scaling factor result of predicting a lot of information for mapping from low-resolution to high-resolution at once. In this paper, we propose a single image super-resolution using Channel Attention Residual Dense Block based on an iterative up-down sampling architecture. The proposed algorithm efficiently predicts the mapping relationship between low-resolution and high-resolution, and shows up to 0.14dB performance improvement and enhanced subjective image quality compared to the existing algorithm at large scaling factor result.
Image steganography Is a secret communication scheme to transmit a secret message, which is embedded into an image. The original image and the embedded image are called the cover image and the stego image, respectively. In other words, a sender embeds a secret message into a cover image and transmits a stego image to a receiver, while the receiver takes the stego image, extracts the message from it, and reads the message. General requirements for steganography are great capacity of secret messages, imperceptibility of stego images, and confidentiality between a sender and a receiver. In this paper, we propose a method for being satisfied with three requirements. In order to hide a secret message into a cover image safely, we use a difference value of two consecutive pixels and a secret quantization range. The former is used for the imperceptibility and the latter for the confidentiality. Furthermore, the number of insertion bits is changed according to the difference value for the imperceptibility. Through experiments, we have shown that our method is more good quality of stego images than many other related methods and increases the amount o( message insertion by performing dual insertion processing for some pixels.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.