• Title/Summary/Keyword: 화질평가표

Search Result 14, Processing Time 0.023 seconds

Quality Control of Upper Gastrointestinal Series(UGIS) by The Image Quality Evaluation Table of Korea and Japan (한.일 화질평가표에 의한 우리나라 위장조영검사의 품질관리)

  • Oh, Hye-Kyong;Kim, Jung-Min;Kim, Chang-Gyun;Park, Young-Seon;Seon, Jong-Ryul;Choi, In-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.277-285
    • /
    • 2011
  • To determine the quality control of UGIS, we acquired 105 patients sampling image at 21 general screening centers. The results of image quality evaluation table containing two countries's UGIS showed that the mean of image qualified education table of our country was 73.3 and the standard error was 4.49; In addition, 19 organizations of 21 general screening centers were given appropriate judgement. The average of image qualified education table of Japan was 58 and the standard error was 4.45. Only 8 organizations were given appropriate judgement. Although we made the image quality evaluation tables with same images, there were many differences in the result of two tables. We figured out the problem about the description of whole stomach and photograph skills. Furthermore, we analysed the situation of the UGIS at each general screening center with the acquired images. The biggest problem of the UGIS of our country was that the procedures were performed without clear medical methods. Methods of UGIS were different at every 21 general screening centers, and most of them did not take exam of anterior surface of stomach of the UGIS. In addition, some general screening centers did not include mucosal relief method or esophagography which is required to include in the image qualified education table of our country. Because polisography is used in the same body position, the problem occured about indiscreet exposure dose of patients. Therefore we have to make an effort to get X-ray images which have enough diagnosis information by the quality control of UGIS.

A Method of Stereoscopic 3D Image Quality Assessment (스테레오스코픽 3D영상 화질 평가 방법)

  • Park, Young-Soo;Hur, Nam-Ho;Pyo, Kyung-Soo;Song, Chung-Kun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-330
    • /
    • 2011
  • For objective assessment of stereoscopic 3D image quality, we measure quality of left and right image with 2D image quality measurement method. However, this method is inconvenient because that we have to measure quality of left and right image individually. Therefore we propose a method of stereoscopic 3D image quality assessment using one overlaid image with left and right image. Using this method, One can measure quality of stereoscopic 3D image more easily and quickly.

Comparison of Quality Control for Chest Radiography between Special Examination and Medical Institution for Pneumoconiosis (진폐 정밀/요양기관과 요양기관의 흉부 방사선분야 정도관리 비교)

  • Lee, Won-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.322-330
    • /
    • 2011
  • To compare of quality control for chest radiography between special examination (SEP) and medical institution for pneumoconiosis (MIP). For the first time, we had visited at 33 institutions (SEP; 17 institutions, MIP; 16 institutions) to evaluate the quality control of chest radiography which is used in diagnosis of patients with pneumoconiotic complications. Image quality was rated by two experienced chest radiologists, and evaluated for radiological technique (RT), reading environment (RE) and image quality (IQ) between SEP and MIP according to the guideline published by OSHRI. Generator capacity, used duration and modality of chest radiography equipment were not signigicant difference between SEP and MIP, but there were signigicant difference in tube voltage and grid ratio used for chest radiography except to tube current and exposure time. SEP was statistically significant higher in RT (71.2 vs. 54.5, p=0.015), RE (78.8 vs. 51.5, p=0.007) to MIP, but not significant difference in IQ (64.8 vs. 59.3, p=0.180). For reliable and precisional diagnosis of patients with pneumoconiotic complications, the MIP requires the evaluation and education of quality control for improving chest radiography.

Analysis of Effectiveness of Spectrum of Energy and Image Quality Evaluation by Aluminium Filter in the added Compound Filtration (에너지 스펙트럼과 화질평가를 통한 복합부가여과에서 알루미늄 여과판의 효율성 분석)

  • Kim, Sang-Hyun;Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.187-197
    • /
    • 2015
  • This study analysed the effectiveness of aluminium(Al) filter in the added compound filtration for the removal of characteristic radiation by energy spectrum and image evaluation. 0.1, 0.2, 0.3 mm copper with and without 1 mm Al were evaluated. The energy spectrum was measured using the GATE and evaluated separately by each energy. Image quality was evaluated by PSNR, MAE, MSE, CNR, SNR and qualitative analysis was performed by seven items for resolution and contrast from chest x-ray criteria of National Cancer Screening and Cardiovascular evaluation table. In the analysis of the quality of the energy per photon spectrum with the exception of a low energy region, without Al were superior in all area. PSNR MAE, MSE, CNR, SNR and qualitative analysis were the same or slightly better. PSNR was over 30 dB and all significant and the p>0.05 in the T-test of qualitative analysis. The energy spectrum and image quality have little difference between before and after use of Al filter. Therefore, it is effective to use the Al filter for the radiation dose management with the compensation capability of DR system.

A Analysis of Effectiveness of Aluminium Filter in the added Compound Filtration by Detective Quantum Efficiency and Image Quality Evaluation (복합부가여과에서 알루미늄 여과판 사용 시 양자검출효율과 화질평가를 통한 효율성 분석)

  • Kim, Sang-Hyeon;Kim, Yun-Min;Kwon, Kyoung-Tae;Ma, Sang-Chull;Han, Dong-Gyoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.362-373
    • /
    • 2015
  • This study analysed the effectiveness of aluminium(Al) filter in the added compound filtration for the removal of characteristic radiation from high atomic number material by DQE and image evaluation. 1mm Al was applied to each 0.1, 0.2, 0.3 mm copper and befere and after use were evaluated. Beam quality and DQE were tested by IEC regulations and image quality was evaluated by PSNR, MAE, MSE, CNR, SNR and qualitative analysis was performed by 7 items for resolution and contrast from chest x-ray criteria of national cancer checkup. MTF 10 and 50% were the same by 4.6, 2.54 cycle/mm and NPS, DQE, PSNR MAE, MSE, CNR, SNR and qualitative analysis were all the same or slightly better when Al was not used. PSNR is over 30dB and all significant and at the qualitative analysis, the p-value of t-test was over 0.05. The DQE and image quality evaluation have little difference between before and after use of Al filter and it is effective to use the Al filter for the reduction of skin dose by removal of characteristic radiation.

Image Quality Assessment Model of Natural Scene Based on Normal Distribution Analysis (일반 장면의 정규분포 분석을 기반으로 한 화질 측정 모형)

  • Park, Hyung-Ju;Har, Dong-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.373-386
    • /
    • 2013
  • In this research, we specify the image consumers' preferred image quality ranges based on objective image quality evaluation factors and follow a method which measures preference of the natural image scenes. In other words, according to No-Reference, we select dynamic range, color, and contrast as factors of image quality measurements. For collecting sample images, we choose the preferred 200 landscapes which have over 30 recommendations by image consumers on the internet photo gallery. According to the scores of three objective factors of image quality measurements, the final expected score which means the image quality preference is measured and its total score is 100 points. In the main test, the actual image sample shows dynamic range 10 stop, LAB mean value L:54.7, A:2.96, B:-15.84, and RSC contrast 376.9. Total 200 image samples' normal distribution z value represents in dynamic range 0.21, LAB mean value L:0.15, A:0.38, B:0.13, and RSC contrast 0.08. In the standard normal distribution table, we can convert the z value as a percentage; dynamic range is 8.32%, LAB mean value is L:5.96%, A:14.8%, B:5.17%, and RSC contrast is 3.19%. And then, we convert the percentage values into the scores of 100; dynamic range is 91.68, LAB mean value is 91.36, and RSC contrast is 96.81. Therefore, we can conclude that the sample image's total mean score is 94.99 based on three objective image quality factors. Throughout our proposed image quality assessment model, we can measure the preference value of natural scenes. Also, we can specify the preferred image quality representation ranges and measure the expected image quality preference.

  • PDF

A Convergence Study on Evaluation of Usefulness of Copper Additional Filter in the Digital Radiography System (디지털 방사선장치에서 구리 부가필터의 유용성 평가에 관한 융복합 연구)

  • Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.351-359
    • /
    • 2015
  • This convergence study analyzed the effectiveness of digital radiography system of copper(Cu) filter in the added filtration for the removal of lower energy radiation through dose and image evaluation. We were analyzed from April to June 2015 result of the examination. Cu filter was applied to each non, 0.1, 0.2, 0.3 mm according to change of kV and mAs and doses were evaluated. Image quality was evaluated by PSNR, MAE, MSE, CNR, SNR and qualitative analysis was performed by seven items for resolution and contrast from chest x-ray criteria of national cancer checkup. The absorbed doses with Cu were lowered by 16-88 % than non-filter but the gaps decreased as kV increased. PSNR were over 30 dB and all significant and CNR and SNR were superior with non-filter but in the qualitative analysis, there were different statistical significant according to each item. The score of 0.1 mm filter was high at pulmonary blood vessel observation and in the 0.3 mm Cu, there were no statistical signigicant except high density and full of air portion. Cu filter can improve image quality with lower radiation dose using better radiation quality and correction power at digital radiography system.

Practical Application of Image Stage Gauge (영상수위계 실용화)

  • Kim, Won;Kim, Chi-Young;Lee, Chan-Joo;Kim, Dong-Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.560-564
    • /
    • 2007
  • 하천 수위 측정을 위해서 우물통을 기본으로 하는 부자식, 초음파식, 기포식, 압력식, 레이다식 등 다양한 장비가 사용되고 있다. 이와 같은 장비는 모두 간접적인 방법으로 수위를 측정하기 때문에 기준값을 바탕으로 보정이 필요하며, 장비의 특성에 따라 여러 가지 장단점을 지니고 있다. 부자식의 경우 오래 전부터 사용되어 안정적으로 수위를 측정할 수 있는 것으로 평가되고는 있으나 우물통 막힘 등으로 인해 오측 혹은 결측이 발생하는 경우가 있다. 최근에 많이 사용되고 있는 센서식 장비의 경우에는 센서에 대한 정기적인 보정이 필요하며, 일부 장비의 경우 온도에 따라 측정값이 변화하는 단점이 있다. 수위 측정 방식은 접촉식과 비접촉식으로 나누어 볼 수 있다. 접촉식의 경우 물속에 센서가 위치하고 있기 때문에 홍수시 센서 유실 및 고장의 우려가 있으며, 잦은 고장의 원인이 되기도 한다. 비접촉 방식인 초음파나 레이다 수위계의 경우 온도에 따라 보정이 필요하거나 수면과의 거리에 커지면 오차가 커지는 경향을 지니고 있다. 또한 이와 같은 간접방식에 의한 수위측정 방법은 수위가 많이 변화하는 경우 실제 수위와 측정되는 수위가 일치하는지를 확인하는 것이 불가능한 단점도 있다. 본 연구에서는 최근에 많이 일반화되고 있는 영상처리 기술을 이용하여 자동적으로 수위를 측정하는 장비인 영상수위계를 개발하였다. 영상수위계는 카메라(CCTV 포함)에 의해서 수위표를 촬영하여 직접 수위값으로 변환하는 원리를 사용하고 있어서 기존 수위측정 시설과는 달리 수위표를 직접 눈으로 확인할 수 있는 장점이 있다. 이로 인해 수위표를 육안으로 확인할 수 있기 때문에 측정된 수위를 검증할 수 있어 수위측정의 정확성을 한층 높일 수 있다. 그리고 수위표 영상과 더불어 수위표 주변의 전체 영상을 동시에 촬영하여 실시간으로 전송하기 때문에 홍수시 하천 상황에 대한 모니터링 목적으로 사용될 수 있다. 본 연구에서 개발한 영상수위계는 한강홍수통제소 관할의 전류, 청담대교 등 4개소 낙동강 홍수통제소 2개소, 지자체 등에 적용되었으며, 적용 결과 비교적 안정적이면서 정확하게 수위를 측정하는 것으로 나타났다. 한편 기존 CCD 카메라 이외에 CCTV를 이용한 영상수위계를 개발하여 영상의 화질 개선뿐 아니라 하천화상 감시 기능을 강화하였다.

  • PDF

A Quality Assurance on Digital Chest Radiography in Medical Institution for Pneumoconiosis : Compared with Analog Radiography (진폐요양기관의 흉부 디지털촬영과 아날로그촬영의 정도관리 비교)

  • Lee, Won-Jeong;Ko, Kyung-Sun;Park, Jai-Soung;Kim, Sung-Jin;Chu, Sang-Deok;Park, So-Young;Choi, Byung-Soon
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2010
  • Digital radiography has been replacing rapidly the analog radiography for diagnosis of pneumoconiosis. The purpose of this study is to compare quality control of digital radiography (DR) and analog radiography (AR) for chest radiography in medical institution for pneumoconiosis (MIP) For the first time, we visited MIP to evaluate the chest radiography which is used for patients with pneumoconiosis, including equipment, technical parameters and reading environment. There were 33 institutions. DR and AR were installed in 24 and 9 institutions, respectively. Between DR and AR, we compared the radiological technique (RT), image quality (IQ) and reading environment (RE) to use the guideline published by Occupational Safety and Health Research Institute (OSHRI). The image quality was rated by two experienced chest radiologists for pneumoconiosis with certified from OSHRI. The chest radiography equipment was not significantly difference between AR and DR, but there were significantly difference in tube voltage and grid ratio used for chest radiography except to tube current, exposure time. Statistically, DR is significantly higher in RT(70.3 vs. 43.8, p = 0.009), RE(77.7 vs. 33.3, p = 0.004) than AR, but it's not significantly difference in IQ (65.6 vs. 52.8, p = 0.050). AR and DR in RT were passed 33.3%, 75.0% respectively (p = 0.044) and 44.4%, 79.2% (p = 0.090) in IQ and 44.4%, 91.7% (p = 0.009) in RE. In MIP, DR needs to replace AR in diagnosis of pneumoconiosis.

A Study on the Usefulness of Deep Learning Image Reconstruction with Radiation Dose Variation in MDCT (MDCT에서 선량 변화에 따른 딥러닝 재구성 기법의 유용성 연구)

  • Ga-Hyun, Kim;Ji-Soo, Kim;Chan-Deul, Kim;Joon-Pyo, Lee;Joo-Wan, Hong;Dong-Kyoon, Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • This study aims to evaluate the usefulness of Deep Learning Image Reconstruction (TrueFidelity, TF), the image quality of existing Filtered Back Projection (FBP) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) were compared. Noise, CNR, and SSIM were measured by obtaining images with doses fixed at 17.29 mGy and altered to 10.37 mGy, 12.10 mGy, 13.83 mGy, and 15.56 mGy in reconstruction techniques of FBP, ASIR-V 50%, and TF-H. TF-H has superior image quality compared to FBP and ASIR-V when the reconstruction technique change is given at 17.29 mGy. When dose changes were made, Noise, CNR, and SSIM were significantly different when comparing 10.37 mGy TF-H and FBP (p<0.05), and no significant difference when comparing 10.37 mGy TF-H and ASIR-V 50% (p>0.05). TF-H has a dose-reduction effect of 30%, as the highest dose of 15.56 mGy ASIR-V has the same image quality as the lowest dose of 10.37 mGy TF-H. Thus, Deep Learning Reconstruction techniques (TF) were able to reduce dose compared to Iterative Reconstruction techniques (ASIR-V) and Filtered Back Projection (FBP). Therefore, it is considered to reduce the exposure dose of patients.