• Title/Summary/Keyword: 화재 사고

Search Result 1,170, Processing Time 0.029 seconds

Development of Silm Type ELCB For Airport Distribution Panel through Increased short Circuit Capacity (단락용량 증대를 통한 슬림형 공항 분전반용 누전 차단기 개발)

  • Joo, Nam-Kyu;Lee, Jong-Myong;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.360-366
    • /
    • 2012
  • In the power distribution panel installed in airport or industrial facilities, MCCB has been used for main switch and ELCB for branch switch to perform human body and leakage-inducing fire protection as well as overcurrent and short circuit protection. Especially for the airport panel, increase in accident protection is needed for stable power supply due to rapid modernization with fast-growing users, higer capacity and diversification of equipment, the increase of power capacity and the breaker made slim is a main issue for now because the issue for installation space is standing out by making panel with two-row arrangement connection method, etc. due to a many use of branch ELCBs. In this thesis, we designed arc extinguishing mechanism, considered movement direction change of contact in mechanism design. Also, we designed the breaker to work stably in case of miniaturization of leakage detection circuit and reverse connection. We conducted short circuit test to verify its function and developed the breaker that can be improved protection against accidental current with slim size operating leakage function when reverse connection to help solve the problem in using space that is increasing in the airport distribution panel.

Estimation of Safety in Railway Tunnel by Using Quantitative Risk Assessment (QRA를 이용한 철도터널 방재 안전성 평가)

  • Kim, Do-Sik;Kim, Do-Hyung;Kim, Woo-Sung;Lee, Du-Hwa;Lee, Ho-Seok
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.357-367
    • /
    • 2006
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures grow longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest of safety in long tunnel have a growing and the safety standard of long tunnel is tightening. For that reason, at the planning of long tunnel, the optimum design of safety facility in long tunnel for minimizing the risks and satisfying the safety standard is needed. For the reasonable design of long railway tunnel considering high safety, qualitative estimation for tunnel safety is required. In this study, QRA (Quantitative Risk Assessment) technique is applied to design of long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design in long railway tunnel is tarried out to verifying the QRA technique for two railway tunnels. Thus, the inclined and vertical shaft for escape way and safety facilities in long tunnel are planned, and the risks of tunnel safety for each case are estimated quantitatively.

An Improvement in Level of Facility Security Operation (시설보안 운영수준 향상방안)

  • Chung, Tae-Hwang;Chang, Hang-Bae
    • Korean Security Journal
    • /
    • no.32
    • /
    • pp.205-225
    • /
    • 2012
  • This study is to present an improvement of facility security through the evaluation of facility security operation level. To fulfill the purpose of the study, a survey of some facilities was conducted and the result was analyzed as follows; First, although security personnels were deployed in the facilities, the level of security personnel operation was relatively low. Second, job education training level was relatively proper, that is relevant to the result that show the level of service mind and the working mind of security personnel were proper, also relevant to the relatively good work shift system. Third, although situation room was operated well, the level of restricted area set-up and access control of visitor were low, and the level of article inspection and vehicle access control were very low. Forth, the level of security manual application that include detailed security method and procedure was proper. But accident prevention and response manual application was lower than security manual application, that show preparation for fire and negligent-accident is passive. For the improvement of facility security, the high level part and low level part in the survey result could be merged. For example, we could specify factors that show low level in the survey such as security personnel operation, access control of visitor and vehicle, article inspection, accident prevention and response in the security manual and promote education circumstance that show high level.

  • PDF

Selection of Auditory Icons in Ship Bridge Alarm Management System Using the Sensibility Evaluation (감성평가를 이용한 선교알람관리시스템의 청각아이콘 평가)

  • Oh, Seungbin;Jang, Jun-Hyuk;Park, Jin Hyoung;Kim, Hongtae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.401-407
    • /
    • 2013
  • In parallel with the development of ship equipment, bridge systems have been improved, but marine accidents due to human error have not been reduced. Recently, research in nautical bridge equipment has focused on suitable ergonomic designs in order to reduce these errors due to human factors. In a bridge of a ship, there are numerous auditory signals that deliver important information clearly to the sailors. However, only a few studies have been conducted related to the human recognition of these auditory signals. There are three types of auditory signals: voice alarms, abstract sounds, and auditory icons. This study was conducted in order to design more appropriate auditory icons using a sensibility evaluation method. The auditory icons were rated to have five warning situations (engine failure, fire, steering failure, low power, and collision) using the Semantic Differential Method. It is expected that the results of this study will be used as basic data for auditory displays inside bridges and for integrated bridge alarm systems.

Nursing Students' Patient Safety Competency and Patient Safety Management Practice (간호대학생의 환자안전 역량과 환자안전관리 행위)

  • Park, Jung-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • This study was conducted to identify the effects of patient safety competency on patient safety management practice by nursing students and provide basic data for the development of the program to improve patient safety management practice. Participants were 293 fourth year nursing students who had clinical practice as student nurses for more than one year. Data were collected from April 26 to May 9, 2018. Collected data were analyzed for frequency, percentage, mean, standard deviation, t-test, ANOVA, Pearson' s correlation coefficient, and multiple regression with SPSS/WIN 24.0 computer program. Nursing students' patient safety competency was an average $2.90{\pm}0.38$ points (patient safety knowledge $2.68{\pm}0.65$; patient safety skills $3.26{\pm}0.56$; patient safety attitudes $2.75{\pm}0.40$). The average core of management practices to patient safety recorded $4.13{\pm}0.57$ points. In terms of the correlation among subjects' patient safety knowledge, skills, attitudes and patient safety management practices, significant correlation existed between skills and management practices (r=.337, p<.001), attitudes and management practices (r=-.150, p =.010), knowledge and management practices (r=.171, p=.003). Regression analysis revealed that 15.7% of the variance in patient safety management practice by nursing students could be explained by patient safety skills (${\beta}=.307$, p<.001), patient safety accident experience of Fire (${\beta}=-.127$, p=.026), patient safety attitudes (${\beta}=-.121$, p=.026), and patient safety accident experience of patient education (${\beta}=-.119$, p=.034). Additional studies to determine the various factors affecting patient safety management practice of nursing students and to develop educational program for increasing patient safety management practice should be conducted.

A Study on the Identification of Hazardous Factors and Prevention of Accident in Old Boilers (노후보일러 유해인자 발굴 및 사고예방에 관한 연구)

  • Sa, Min-Hyung;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Large-scale industrial boilers operating at high temperature and high pressure, have a large amount of water, and a large amount of energy is released at the time of explosion. Currently, most industrial boilers use gas fuel such as LNG and LPG, etc. and fuel exists in the same space as equipment, so there is a high possibility of secondary damage such as fire or explosion in the event of a boiler accident. Both special care and management are required to operate the very dangerous equipment that causes casualty 2.51 per accident. For boilers of a certain size or more, the Korea Energy Agency conducts inspections in accordance with the Energy Usage Rationalization Act, KS, and public notice of the Ministry of Industry, Trade and Resources. In this research, based on the results of the inspection, the hazard factorss are configured, and a questionnaire is conducted to the inspector, the equipment manager, the maintenance person, and the person in charge of the manufacturer. We analyzed the results by using AHP (Analytic Hierarchy Process). As a result of analysis, generally recognized hazard factorss are not good management, measurement failure, specification failure, water leak, leak analysis, but connection, welding, scale, and corrosion, etc. are relatively less important. It is judged that the adverse factors that are recognized to be highly important among all groups and careers are already well managed, but less important and adverse factors should be well managed to ensure that the safe usage of the boiler.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

A Study of Explosion Risk Assessment for Designation of Dangerous Goods Transshipment Pier at Ulsan Port (울산항 위험물 환적부두 지정을 위한 폭발 위험성 평가에 관한 연구)

  • Kang, Min-Kyoon;Lee, Yun-Sok;Ahn, Young-Joong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.109-116
    • /
    • 2021
  • The explosion of a chemical tanker ship during cargo transshipment via double-banking at Ulsan Port, resulted in major damage including fires involving nearby ships. As a follow-up measure to prevent the recurrence of similar accidents, the 'Safety Management of Dangerous Goods in Port' was established, and the designation of a transshipment pier for dangerous goods is required given the risk of explosion and the impact on major facilities in the port. This study evaluated the Fire & Explosion Index of major transshipment cargoes in Ulsan Port to design a transshipment pier based on the Explosion Risk Assessment. Based on the results of Fire & Explosion Index evaluation of styrene monomer and benzene, severe explosion risk was confirmed, and the exposure radius was calculated. Based on the results of the exposure radius, the risk range for each major pier was calculated, and 12 terminals were proposed as transshipment pier candidates considering port facilities, surrounding dangerous facilities, and residential aspects. Since the results of the study suggest transshipment piers based on the risk radius alone, maritime traffic safety, pier and mooring facilities, safety facilities and accessibility for emergency response should be considered comprehensively to designate actual transshipment piers.

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.