• Title/Summary/Keyword: 화재억제시간

Search Result 17, Processing Time 0.027 seconds

A Basic Study on Required Performance and Development Direction of Fire Resistance Wall on High-rise Building (초고층 건축물용 내화벽체 요구성능 및 개발방향 설정을 위한 기초연구)

  • Kim, Dae-Hoi;Park, Soo-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Recently the interest in disaster prevention on super tall buildings is increasing. Especially in fire, against increasing of evacuation time due to high-rise, It is being tried to minimize the fire spread in building. Fire compartments using the fire-resistant wall and door, typical method to control the fire spread in buildings, delay the fire spread to other compartments and consequently evacuation time increases. But the existing provisions adjure only 2-hour fire resistance with maximum limit regardless of the super tall buildings, so this is a obstacle for research and development of the fire resistance wall in super tall buildings. In this study, we reviewed the fire resistance ratings of the wall, and presented the development directions for the fire resistance wall in super tall buildings considering fire resistance, construction and application of the wall.

The Flame and Distributed Temperature Restraint Properties of Fire Venetian Blind Louver in Buildings (차양식 방화루버의 화염 및 온도 전파 억제 특성)

  • Chae, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.120-127
    • /
    • 2015
  • The purpose of this study is to improve the fire prevention performance using the fire venetian blind louver subjected to burning by fire flame. The investigation is based on testing 2 full scale specimens, which is $3m{\times}3m$ module, $850mm{\times}1,500mm$ open, and $900mm{\times}900mm{\times}175mm$ venetian blind louver. Two louver thickness (1.5 and 2.0mm) were adopted. The specimens were exposed to fire flame temperature levels of ISO834 at the lower surface of the fire venetian blind louver specimens with exposure duration of one hour in Korea Institute of Construction Technology (KICT). It was found from the test results that the values of distributed temperature, decreased for all specimens for protecting to fire flame by venetian blind louver. The results of tests were a good fire prevention performance between in initial to 6 mins. At 60 minutes around ISO 834 fire loading, the percentages of distributed temperature in 500mm and 800mm height ranged between 11 and 10% respectively, regardless of louver thickness. This study, therefore, will improve the fire venetian blind louver for fire protection and prevention performance.

The Influence of Silica Fume and PP Fiber Contents on Explosive Spalling of Concrete (실리카흄 및 PP섬유가 콘크리트의 폭렬에 미치는 영향)

  • Kim, Dong-Joon;Kim, Jeng-Hee;Lee, Jae-Young;Kazunori, Harada;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.382-385
    • /
    • 2011
  • 본 논문은 초고강도콘크리트의 폭렬현상을 연구해 보고자 실리카흄 유무와 PP섬유의 혼입량을 변수로 하여 공시체와 벽체의 폭렬현상을 관찰한 후 변수가 초고강도콘크리트에 어떠한 영향을 주는지를 실험적으로 규명하는 것을 목적으로 하였다. KS F 2257 화재온도이력곡선을 30분 적용하여 콘크리트의 초기 폭렬특성을 실험적으로 검토하였다. 그 결과 공시체의 경우 압축강도가 100 MPa 초고강도콘크리트의 경우에는 실리카흄 여부와 PP섬유 혼입량이 폭렬억제에 관계되는 주요 인자인 것을 알 수 있었으며, 벽체의 경우에는 벽체 시험체의 부분 가열 및 전면 가열 실험을 실시했다. 폭렬 최대 깊이, 시간, 소리 발생 회수를 비교하면 부분 가열이 전체 가열에 비해 폭렬이 빠르고 깊게 발생하는 것으로 나타났다.

  • PDF

Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries (Phase Change Material (PCM) 소재 적용 소방보호복의 화상발생 억제효과에 관한 연구)

  • Lee, Jun Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.16-22
    • /
    • 2016
  • Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments. To enhance its protection performance, the FFPC material must be thick and thus it is difficult to achieve weight reduction. One of the methods of overcoming this problem, the addition of phase change material (PCM) to FFPC, is a new technology. In previous studies, the researches was mostly related to the temperature characteristics of the fibers incorporating PCM, but little information is available about its effect on burn injuries. Thus, in this study, the inhibitory effects of adding PCM to FFPC on second degree burns were investigated through numerical calculations. Thermal analyses of biological tissues and FFPC with embedded PCM exposed to several fire conditions causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. FFPC with embedded PCM was found to provide significantly greater protection than conventional fire fighting clothing, because the heat of absorption due to the phase change within the material is used to limit the heat conduction of the material.

Ignition Suppression in Hydrogen/Air Mixtures Inhibited by Heptafluoropropane (HFP를 첨가한 수소/공기 혼합기의 발화억제)

  • Lee, Eui-Ju;Oh, Chang-Bo
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Autoignition suppression of hydrogen/air premixed mixtures by $CF_3CHFCF_3(HFP)$ was investigated computationally. Numerical simulation was performed in isobaric and homogeneous system to evaluate the induction times. The detailed chemistry of 93 species and 817 reaction mechanism was introduced for hydrogen/air/HFP mixtures. The result of pure hydrogen/air mixture show that the resulting value of induction time depends relatively weakly on the definition used event though there are various criteria for defining the induction time such as the inflection of temperature, OH and $O_2$ concentrations generally. Also, the autoignition temperature of $H_2/air$ mixture is estimated to about 850K, which is corresponds to the literature value. In the case of HFP addition in $H_2/air$ mixture, the results shows that there are several inflection points of radical concentration, and hence it might be to use the temperature for defining ignition delay. When HFP is added to stoichiometric $H_2/air$ mixture, the effect of ignition delay is outstanding above 10% HFP concentration. As HFP concentration increases, both dilution and chemical effects contribute to delay the ignition. Also, the chemical effect on the ignition delay is more considerable with the higher HFP concentration.

A Study on the Anti-Spalling Performance of High-Strength Concrete Members by covered Engineered Cementitious Composite (ECC로 피복된 고강도콘크리트 부재의 폭렬억제성능에 관한 연구)

  • Lee, Jae-Young;Kim, Jae-Hwan;Han, Byung-Chan;Park, Sun-Gyu;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites (ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 5 HSC specimens are being exposed to fire, in order to exami ne the influence of vari ous parameters (such as depth of layer=20, 30, 40 mm; construction method=lining and repairing type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion (3 hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

Smoke Exhaust Performance Prediction According to Air Supply and Exhaust Conditions for Shipboard Fires from a Human Safety Point of View (인명안전 관점에서 선박 화재 시 급·배기조건에 따른 배연성능 예측평가)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.782-790
    • /
    • 2016
  • When a fire occurs on a ship that has mechanical ventilation facilities, the air supply and exhaust systems directly effect smoke diffusion. And there is a high possibility that occupant's visibility will be harmed because of smoke. In this study, the effects and risks of air supply and exhaust systems with regard to smoke diffusion given a shipboard fire analyzed with a Fire Dynamic Simulator(FDS). Suggested measures are also provided for using air supply and exhaust systems more efficiently. The results showed that, when air supply and exhaust systems were both working at the time of a fire, rather than stopping these systems as previously encouraged, continuing to operate both was an effective measure to gain evacuation time. When a fire occurred and the exhaust system was operating, also starting the air supply system near the origin of the fire was another effective approach to gain evacuation time. However, when only the air supply system was operating and a fire occurred, the air supply system accelerated smoke diffusion, so it was necessary to stop the air supply system to detect smoke diffusion as much as possible.

The Study on the Countermeasure Plans about Leakage, Explosion and Fire Accidents of Atmospheric Storage Tank (옥외저장탱크 누출, 폭발 및 화재사고 대응방안에 관한 고찰)

  • Lee, Gab-Kyoo
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.48-56
    • /
    • 2016
  • A crude oil leakage from a large atmospheric storage tank occurred on 4 April 2014 at 14:50 in Ulsan City, while storing the crude oil in the tank. Emergency Rescue Control Group was deployed in the scene. The company, Fire Service Headquarters and associated agencies got together in Command Post (CP) for discussing an effective corresponding strategy. Many solution plans were drafted in the debate such as power down, stopping the facilities, checking the density of inflammable gas, suppressing oil evaporation, moving the leaked crude oil to a nearby tank and a processing plant and avoiding marine pollution. All the solutions were carried out in cooperation with several agencies and partners. The oil leakage accident was successfully settled up within the process of responding, The Fire Service Headquarters and the company thought that the most important thing was the suppression of oil evaporation and the elimination of ignition source. With Fire Service Headquarters and several agencies' every effort, an explosion and a fire didn't occurred in the scene. This study suggest the improvement of the operating system in Emergency Rescue Control Group in case of petroleum leakage, explosion and fire accidents of atmospheric storage tank, different from a ordinary disaster. Assuming that petroleum leakage in atmospheric storage tank develop the explosion and fire accidents, the spreading speed of the flame and the burning time was experimented and compared with each other. Furthermore, this study concentrates on the effective field response plan prepared for the afterward explosion and fire accidents from petroleum leak in a storage tank, with the database experimented and analyzed in accordance with the angle of radiation in the foam nozzle and the pressure of pumping in a fire engine.

Combustion Characteristics of Pinus rigida Specimens Treated with Phosphorus-Nitrogen Additives (인-질소 첨가제로 처리된 리기다 소나무 시험편의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.13-19
    • /
    • 2015
  • This study was performed to test the combustive properties of Pinus rigida specimens treated with phosphorus (P) and nitrogen (N) additives. Each Pinus rigida specimen was painted three times with 15 wt% P-N additive solutions at room temperature. After drying the treated specimens, the combustion properties were examined using a cone calorimeter (ISO 5660-1). The time to ignition (TTI) for the treated specimens was 90 to 148 s except for the specimen treated with PP/$4NH_4^+$, and the time to flameout (TF) was 556 to 633 s, which was longer than that of virgin plate. While the The specimens treated with P-N additives showed 12.5 to 43.4% higher mean heat release rate ($HRR_{mean}$) and 11.8 to 43.1% higher total heat release (THR) than virgin plate. The effective heat of combustion (EHC) was by 2.9 to 17.5% lower than that of virgin plate. It can thus be concluded that the combustion-retardation properties were partially improved compared to those of virgin plate.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.