• Title/Summary/Keyword: 화석 연료

Search Result 850, Processing Time 0.036 seconds

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

Exposure and Risk Assessments of Multimedia of Arsenic in the Environment (환경 중 비소의 매체통합 노출평가 및 위해성평가 연구)

  • Sim, Ki-Tae;Kim, Dong-Hoon;Lee, Jaewoo;Lee, Chae-Hong;Park, Soyeon;Seok, Kwang-Seol;Kim, Younghee
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.152-168
    • /
    • 2019
  • The element arsenic, which is abundant in the Earth's crust, is used for various industrial purposes including materials for disease treatment and household goods. Various human activities, such as the disposal of soil waste, metal mining and smelting, and combustion of fossil fuels, have caused the pollution of the environment with arsenic. Recently, guidelines for arsenic in rice have been adopted by the Korean ministry of food and drug safety to prevent health risks based on rice consumption. Because of the exposure to arsenic and its accumulation in the human body through various channels, such as air inhalation, skin contact, ingestion of drinking water, and food consumption, integrated multimedia risk assessment is required to adopt appropriate risk management policies. Therefore, integrated human health risk assessment was carried out in this study using integrated exposure assessment based on multimedia (e.g., air, water, and soil) and multi-route (e.g., oral, inhalation, and dermal) scenarios. The results show that oral uptake via drinking water is the most common pathway of arsenic into the human body, accounting for 57%-96% of the total arsenic exposure. Among various age groups, the highest exposures to arsenic were observed in infants because the body weight of infants is low and the surface areas of infant bodies are large. Based on the results of the exposure assessment, the cancer and non-cancer risks were calculated. The cancer risk for CTE and RME is in the range of 2.3E-05 to 6.7E-05 and thus is negligible because it does not exceed the cancer probability of 1.0E-04 for all age groups. On the other hand, the cancer risk for RME varies from 6.4E-05 to 1.8E-04 and from 1.3E-04 to 1.8E-04 for infants and preschool children, exceeding the excess cancer risk of 1.0E-04. The non-cancer risks range from 5.4E-02 to 1.9E-01 and from 1.5E-01 to 6.8E-01, respectively. They do not exceed the hazard index 1 for all scenarios and all ages.

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.

Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites (Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가)

  • Shin, Hyo-Won;Hwang, June-Hyeon;Kim, Eun-A;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2021
  • Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites' manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99' (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99' methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Current Status of Sericulture and Insect Industry to Respond to Human Survival Crisis (인류의 생존 위기 대응을 위한 양잠과 곤충 산업의 현황)

  • A-Young, Kim;Kee-Young, Kim;Hee Jung, Choi;Hyun Woo, Park;Young Ho, Koh
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.605-614
    • /
    • 2022
  • Two major problems currently threaten human survival on Earth: climate change and the rapid aging of the population in developed countries. Climate change is a result of the increase in greenhouse gas (GHG) concentrations in the atmosphere due to the increase in the use of fossil fuels owing to economic and transportation development. The rapid increase in the age of the population is a result of the rise in life expectancy due to the development of biomedical science and technology and the improvement of personal hygiene in developed countries. To avoid irreversible global climate change, it is necessary to quickly transition from the current fossil fuel-based economy to a zero-carbon renewable energy-based economy that does not emit GHGs. To achieve this goal, the dairy and livestock industry, which generates the most GHGs in the agricultural sector, must transition to using low-carbon emission production methods while simultaneously increasing consumers' preference for low-carbon diets. Although 77% of currently available arable land globally is used to produce livestock feed, only 37% and 18% of the proteins and calories that humans consume come from dairy and livestock farming and industry. Therefore, using edible insects as a protein source represents a good alternative, as it generates less GHG and reduces water consumption and breeding space while ensuring a higher feed conversion rate than that of livestock. Additionally, utilizing the functionality of medicinal insects, such as silkworms, which have been proven to have certain health enhancement effects, it is possible to develop functional foods that can prevent or delay the onset of currently incurable degenerative diseases that occur more frequently in the elderly. Insects are among the first animals to have appeared on Earth, and regardless of whether humans survive, they will continue to adapt, evolve, and thrive. Therefore, the use of various edible and medicinal insects, including silkworms, in industry will provide an important foundation for human survival and prosperity on Earth in the near future by resolving the current two major problems.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

A Review on Solution Plans for Preventing Environmental Contamination as the Trend Changes of Cryptocurrency (암호화폐의 트랜드 변화에 따른 환경오염 방지 해결방안에 대한 고찰)

  • Kim, Jeong-hun;Song, Sae-hee;Ko, Lim-hwan;Nam, Hak-hyun;Jang, Jae-hyuck;Jung, Hoi-yun;Choi, Hyuck-jae
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Cryptocurrency, stood out the sharp cost rising of Bitcoin has been spotlighted by means of the solution for stagflation because it is decentralized with an existing currency differently. Especially getting into 4th industrial revolution, technologies using block chain and internet of things have been used in the many fields, and the power of influence is also widespread. Nevertheless like a remark of Elon Musk of Tesla CEO, the problems of environmental contamination for cryptocurrency have been pointed out continuously and the most representative of them is an enormous electric usage as the use of fossil fuels. Also the amount generated of carbon dioxide result in the acceleration of global warming mainly based on the climate changes of earth if the existing mining method is continued. On the other hand, review researches have been conducted restrictively as the connection with environmental contamination as the mining of cryptocurrency. In this study, it intended to review problems for environmental contamination as the diversification of ecological system of cryptocurrency concretely. Upon investigation existing prior documents on the putting recent data first, the mining of cryptocurrency has affected on the environmental contamination conflicting with carbon neutrality as increasement of the electric usage and electronic wastes. And POS method without the mining process appeared, but it had a demerit collapsing a decentralization and then we met turning point on appearing various environmental-friendly cryptocurrency. Finally the appearance of cryptocurrency using new renewable energy acted on the opportunity of the usage maximization of energy storage apparatus and the birth of national government intervention. Based on these results, we mention clearly that hereafter cryptocurrency will regress if not go abreast the value of currency as well as environmental approach.

Analysis of Management Status and Optimum Production Scale of Quarrying Firms in Korea -Comparative Analysis of Aggregate and Building-Stone Quarrying Firms- (산지채석업체(山地採石業體)의 경영실태(經營實態) 및 적정규모설정(適正規模設定) -골재용(骨材用) 채석업체(採石業體)와 건축용(建築用) 채석업체(採石業體)의 비교(比較) 분석(分析)-)

  • Joung, Ha Hyeon;Cho, Eung Hyouk
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.72-81
    • /
    • 1991
  • This study was carried out to provide necessary information for improving quarrying industry management in Korea. The results of the study are summarized as follows : 1. In aggregate and building-stone quarrying firms the managers over 40 years of age are 97% and 89.1%, the ones above education level of high school are 90% and 85% and the ones not more than 10 years of quarrying experience are 70% and 52%, respectively. Accordingly it can be pointed out that most of the managers of two types of firms are relatively old, have high educational background, while quarrying experiences of building-stone firm managers are longer than that of aggregate firm managers. 2. Most of the management forms are social corporation(60%) for aggregate quarry firms and private management(76%) for building-stone firms. Average areas of permitted stone-pits of aggregate and building-stone quarries are about 2.86ha and 1.66ha respectively. That is, aggregate quarrying firms are carried on a larger scale than building-stone quarrying firms. 3. The yearly average product of aggregate quarrying firms has increased steadily from $88.961m^3$ in 1985 to $144.028m^3$ in 1988, while, in case of building-stone quarry firms, it has significantly increased from $4.155m^3$ to $19.462m^3$ from 1985 to 1987, but reduced to $13.400m^3$ in 1988. Unstable production activities of building-stone quarrying firms may require continuous government support. 4. Major cost items are equipment rental, depreciation, salaries, repair, maintenance for aggregate quarrying firms, and salaries, depreciation, fuel, tax for building-stone quarrying firms. The yearly average rate of return is about 9.7% for aggregate quarry firms and 2.6% for building-stone quarry firms. It can be pointed out that aggregate quarrying firms is better managed than building-stone quarrying firms. 5. The production elasticity of salary for aggregate quarrying firms is 0.495, that of employees is 0.559, and that of capital service is 0.513. The sum of the elasticities is 1.257>1. Fur building-stone quarrying firms, that of employees is 0.492, that of variable costs is 0.192, and that of capital service is 0.498. The sum of elasticities is 1.172>1, thus denotes the increasing returns to scale for both types quarrying firms. 6. The ratio of marginal value product to opportunity cost of empolyees is 2.54, that of variable costs is 3.62, and that of capital service is 1.45, in aggregate quarrying firms. That of employees is 2.47, that is variable costs was 2.34, and that of capital service is 19.67 in building-stone quarrying firms. Therefore the critical factors for more expansion of management scale in aggregate quarrying firms are variable cost and employees, and are capital service in building-stone quarry ing firms. 7. The break-even points of stone sales are about 0.587 billion won and 0.22 billion won in aggregate and building-stone quarrying firms respectively. The optimum sales Level for profit maximization are about 2.0 billion and 0.5 billion in aggregate and building-stone quarry firms respectively.

  • PDF