• Title/Summary/Keyword: 홍수빈도곡선

Search Result 116, Processing Time 0.021 seconds

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model (Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok;Na, Bong-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.505-516
    • /
    • 2012
  • The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.

Development of Wetershed Runoff Index for Major Control Points of Geum River Basin Using RRFS (RRFS에 의한 금강수계의 주요지점별 유역유출지표 개발)

  • Lee, Hyson-Gue;Hwang, Man-Ha;Koh, Ick-Hwan;Maeng, Seung-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.140-151
    • /
    • 2007
  • In this study, we attempted to develop a watershed runoff index subject to main control points by dividing the Geum River basin into 14 sub-basins. The Yongdam multipurpose dam Daecheong multipurpose dam and Gongju gage station were selected to serve as the main control points of the Geum River basin, and the observed flow of each control point was calculated by the discharge rating curve, whereas the simulated flow was estimated using the Rainfall Runoff Forecasting System (RRFS), user-interfaced software developed by the Korea Water Corporation, based on the Streamflow Synthesis and Reservoir Regulation (SSARR) model developed by the US Army Corps of Engineers. This study consisted of the daily unit observed flow and the simulated flow of the accumulated moving average flow by daily, 5-days, 10-days, monthly, quarterly and annually, and normal monthly/annually flow. We also performed flow duration analysis for each of the accumulated moving average and the normal monthly/annually flows by unit period, and abundant flow, ordinary flow, low flow and drought flow estimated by each flow duration analysis were utilized as watershed runoff index by main control points. Further, as we determined the current flow by unit period and the normal monthly/annually flow through the drought and flood flow analysis subject to each flow we were able to develop the watershed runoff index in a system that can be used to determine the abundance and scarcity of the flow at the corresponding point.

Characteristic Analysis of Severe Heavy Rain in Jinju area in July 2006 (2006년 7월 진주지역 집중호우 특성 분석)

  • Chu, Hyun-Jae;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.296-300
    • /
    • 2007
  • 우리나라에 내리는 대부분의 강수량은 6월${\sim}$8월의 장마기간 혹은 태풍의 영향으로 인해 발생한다. 특히 국지적으로 발생하는 집중호우로 인해 많은 인명, 재산 피해 등이 발생한다. 우리나라에서 집중호우로 인한 피해는 거의 매년 발생하고 있으며, 집중호우의 발생 지역은 특정 지역에 국한되어 있지 않다. 따라서 집중호우 발생으로 인한 피해 방지를 위해 사전에 충분한 준비를 해야 한다. 2006년 7월 8일부터 10일까지 3일 동안 진주지역 306.5mm, 합천지역 259.5mm, 산청지역 366.0mm의 집중호우가 발생하였으며, 이 기간 동안 이들 지역 외에도 전국적으로 태풍 에위니아(EWINIAR)의 영향으로 많은 호우가 발생하였다. 본 연구에서는 2006년 7월 진주지역 집중호우 특성 연구를 위해 진주지역 시강우 자료를 이용하여 자료를 분석하였다. 시강우 자료를 이용하여 진주지역 재현기간별 확률강우량을 산정하였고 2006년 7월 8일부터 10일까지의 강우분포형태를 설계강우분포형과 비교하였다. 또한 2006년 7월 발생했던 진주지역 집중호우의 무차원 누가곡선을 작성하여 분석을 실시하였다. 분석 결과 일최대 강우량의 경우 그 크기가 50년 혹은 80년 이내였으며, 강우분포형의 경우 하천정비기본계획의 경우 Mononobe 중앙집중형이였지만, 지난 호우의 경우 후방위의 강우가 연속적으로 발생한 형태였다. 또한 대부분의 강우가 6시간 이내에 내려 첨두홍수 발생에 많은 영향을 미쳤을 것으로 판단된다. 앞으로 이상기후와 같은 자연 현상에 대비하기 위해서는 단시간 호우에 대한 정확한 분석과 강우분포에 대한 연구가 더욱 필요할 것으로 생각된다.적자색의 미려한 결정이 석출되므로 이 결정을 여과하여 ethanol로 세척하고 진공 desiccator중에서 건조시켰다. 수득량 1.2~1.3g.)와의 조환가는 11.9565의 상인연소현상을 보였다. 삭과색(Y) 경색(R) 유전자간에는 어느것이나 연소현상이 보이지 않았다. 4. 단일반응성의 변이는 연소적이며 우성은 거의 인정되지 않았고 인자간의 상호작용도 인정되지 않았으며 상가적 유전을 보였다. 광의와 협의의 유전력은 각각 89.50%로서 실용적으로 대단히 높은 것으로 생각되었으며 단일반응성에 관여하는 유전자수는 2대의 인자로 추정하였고 다시 양친의 유전자형을 aabb AABB라고 측정하여 각인자의 작용가는 11.136일로 산출되었고 분해법에 의한 유전분석결과 유전자형의 관찰빈도분포와 이론빈도분포는 서로 잘 적합되었다. 단일반응성에 있어서 유전력이 대단히 높았으므로 비교적 초기세대에서 본 형질의 선발이 가능할 것 같았다. 5. 단일반응성과 엽형 및 엽병색 유전자와의 사이에 $F_2$, $BC_1$$BC_2$에서 각각 유의적인 상관관계를 볼 수 있었으므로 이들 형질간에 연소가 있는 것으로 인정되었다. 더욱 엽형과 엽병색과의 연소가 있는 것으로 인정되는 이상단일반응성 유전자와의 사이에 연소군이 인정된다. 6. 섬유중 유전자와 엽병색 및 엽형유전자와의 사이에 $F_2$$BC_1$$BC_2$에서 각각 유의적 상관관계를 볼 수 있었으므로 이를 형질간에 연소가 있는 것으로 인정되었다. 더욱 엽형과 엽병색과의 연소가 있는 것으로 인정되는 이상 섬유중 유전

  • PDF

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards (서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정)

  • Yoon, Sun-Kwon;Lee, Taesam;Seong, Kiyoung;Ahn, Yujin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.419-431
    • /
    • 2021
  • In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.