• 제목/요약/키워드: 홉필드 네트워크

검색결과 36건 처리시간 0.026초

부분적으로 가려진 물체 인식을 위한 어닐드 홉필드 네트워크 (Annealed Hopfield Neural Network for Recognizing Partially Occluded Objects)

  • 윤석훈
    • 한국전자거래학회지
    • /
    • 제26권2호
    • /
    • pp.83-94
    • /
    • 2021
  • 컴퓨터 비전 적용 분야에서 부분적으로 가려진 물체 인식의 필요성은 증가하고 있다. 물체를 확인하고 위치를 지정하는 데에 물체가 가려진 것은 심각한 문제를 야기한다. 이 논문은 여행자 소지 수하물에서 위험 물건을 발견하기 위하여 어닐드 홉필드 네트워크를 제안한다. 어닐드홉필드 네트워크는 하이브리드 홉필드 네트워크와 어닐링 이론에 기초한 확정적 근사방법이다. 하이브리드 홉필드 네트워크는 위험 물체의 이미지에서 발췌한 경계 점들과 코너 점들을 이용한다. 또한 어닐드 홉필드 네트워크의 런타임을 줄이기 위해 임계 온도를 조사하였다. 어닐드 홉필드 네트워크와 하이브리드 홉필드 네트워크의 성능을 비교하기 위하여 광범위한 컴퓨터 실험이 실행되었다.

퍼지 이진화 방법과 홉필드 네트워크를 이용한 손상된 이진 영상 복원 (Reconstruction of Partially Damaged Binary Images by Using Fuzzy Binaarization and Hopfield Network)

  • 김지연;정인성;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.470-473
    • /
    • 2016
  • 본 논문에서는 영상에서 일부 정보가 손실 또는 손상된 경우에 대해서 홉필드 네트워크를 적용하여 영상을 복원하는 방법을 제안한다. 제안된 방법은 영상을 그레이 영상으로 변환한 후, 퍼지 이진화 기법을 적용하여 영상을 이진화한다. 이진화된 영상에 홉필드 네트워크를 적용하여 영상의 특징들을 학습한다. 따라서 영상의 일부 정보가 손실되거나 잡음이 있는 영상에서 퍼지 이진화 기법을 적용하여 이진화한 후, 이진화된 결과를 홉필드 네트워크에 적용하여 영상을 복원한다. 제안된 방법을 5장의 그레이 영상을 대상으로 실험한 결과, 퍼지 이진화 기법과 홉필드 네트워크를 적용한 방법이 잡음이 있거나 영상의 정보가 손실된 영상에서 복원 정도가 높은 것을 실험을 통하여 확인하였다.

  • PDF

히스토그램 기반 오츠 이진화 및 퍼지 이진화 방법과 홉필드 네트워크를 이용한 손상된 이진 영상 복원 (Reconstruction of Damaging Binary Images using Histogram based Otsu and Fuzzy Binaarization and Hopfield Network)

  • 강경민;정영훈;서지연;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.626-628
    • /
    • 2016
  • 본 논문에서는 이진 영상에서 일부 정보가 손실된 경우에 히스토그램을 분석하여 구간을 분할한 후, 오츠 이진화와 퍼지 이진화 기법을 적용하여 원 영상을 이진화 한 후에 홉필드 네트워크를 적용하여 영상을 복원하는 방법을 제안한다. 제안된 방법은 그레이 영상에서 히스토그램을 분석하여 픽셀 값의 변화의 폭이 큰 부분들을 분석하여 구간들을 분할하고 변화의 폭이 큰 부분의 지점에 속하는 영역은 오츠 이진화 기법을 적용하여 이진화하고 그 외의 구간들은 퍼지 이진화 기법을 적용하여 영상을 이진화 한다. 그리고 이진화 된 영상을 홉필드 네트워크를 적용하여 학습한다. 실험 영상에 정보 손실이 발생한 영상을 대상으로 제안된 방법을 적용한 결과, 대부분의 정보 손실이 있는 영상에서 모두 복원되는 것을 확인하였다.

  • PDF

홉필드 네트워크와 퍼지 Max-Min 신경망을 이용한 손상된 교통 표지판 인식 (Damaged Traffic Sign Recognition using Hopfield Networks and Fuzzy Max-Min Neural Network)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제26권11호
    • /
    • pp.1630-1636
    • /
    • 2022
  • 현재 교통 표지판 인식 기법들은 다양한 날씨, 빛의 변화 등과 같은 외부환경 뿐만 아니라 교통 표지판이 일부 훼손된 경우에는 인식 성능이 저하되는 경우가 발생한다. 따라서 본 논문에서는 이러한 문제점을 개선하기 위하여 홉필드 네트워크와 퍼지 Max-Min 신경망을 이용하여 손상된 교통 표지판의 인식 성능을 개선하는 방법을 제안한다. 제안된 방법은 손상된 교통 표지판에서 특징들을 분석한 후, 그 특징들을 학습 패턴으로 구성하여 퍼지 Max-Min 신경망에 적용하여 1차적으로 교통 표지판의 특징을 분류한다. 1차적 분류된 특징이 있는 학습 영상들을 홉필드 네트워크에 적용하여 손상된 특징을 복원한다. 홉필드 네트워크를 적용하여 복원된 교통 표지판의 특징들을 다시 퍼지 Max-Min 신경망에 적용하여 최종적으로 손상된 교통 표지판을 분류하고 인식한다. 제안된 방법의 성능을 평가하기 위하여 손상된 정도가 다른 다양한 교통 표지판 8개를 적용하여 실험한 결과, 제안된 방법이 퍼지 Max-Min 신경망에 비해 평균적으로 38.76%의 분류 성능이 개선되었다.

전자상거래를 위한 Item Dependency Map 기반 개인화된 추천기법 (Personalized Recommendation based on Item Dependency Map)

  • 염선희;조동섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.475-477
    • /
    • 2001
  • 본 논문은 사용자의 구매 패턴을 찾아서 사용자가 원하는 상품을 추천하는 알고리즘을 제안하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B 상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트웍(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트웍에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.

  • PDF

병렬 다중 홉 필드 네트워크 구성으로 인한 2-차원적 얼굴인식 기법에 대한 새로운 제안 (Redundant Parallel Hopfield Network Configurations: A New Approach to the Two-Dimensional Face Recognitions)

  • 김영택
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권2호
    • /
    • pp.63-68
    • /
    • 2018
  • 얼굴인식 분야의 관심은 다양한 신흥분야의 응용에 의해 증강되고 있다. 2-차원적인 인식 알고리즘의 필요성이 어떤 변화무쌍한 환경들, 예를 들어서, 얼굴의 방향이나 조명도, 안경의 유무, 혹은 웃음과 울음 같은 다양한 표정변화의 처리에 적합할 수 있게 고찰 되어 지고 있다. 형상 기억이나 일반화 과정, 유사성 인식, 오류수정 등에 장점을 가지고 있는 홉 필드 네트워크의 기능을 바탕으로 하여 본 연구에서는 새로운 방법의 병렬적인 다중 홉 필드 네트워크를 구성하여 변화에 강한 얼굴표정 인식의 실험을 2-차원 알고리즘으로 실시하였고 결과가 실제적인 얼굴 형상 환경 변화에서 강한 적응성을 가지고 있음을 확인하였다.

인공 신경망을 이용한 구조 최적화 기법

  • 양영순;문상훈
    • 대한조선학회지
    • /
    • 제31권1호
    • /
    • pp.39-42
    • /
    • 1994
  • 인공 신경망은 빠른 속도와 안정성 등의 많은 장점을 갖고 있기 때문에 최근 들어서 여러 분야 에서 그 응용이 활발히 연구되고 있다. 인공 신경망의 한 모델인 홉필드 네트워크는 네트워크의 에너지를 최소화시키는 방향으로 네트워크의 상태를 바꾸며, 최소 에너지 상태에서 안정 상태를 유지하는 특징을 갖고 있다. 이러한 흡필드 네트워크의 특징은 흡필드 네트워크를 최적화 문 제에 적용시킬 수 있는 가능성을 제시하고 있다. 기존의 최적화 기법은 기본적으로 국부적인 탐색 기법을 사용하기 때문에, 전역적 최적해를 구하기 위해 초기점을 달리하여 여러번 계산을 수행하여 그 중 가장 좋은 결과를 취하는 방법을 사용하여야 한다. 따라서 이러한 방법은 초 기점의 선택이 결과에 큰 영향을 미치게 되는데, 설계 변수가 많고 제한 조건이 복잡할 경우 초기점 선택에 어려움이 따른다. 본 연구에서는 흡필드 네트워크와 시뮬레이티드 어닐링을 결 합하여 전역적 최적해를 찾는 기법으로서 뉴드-옵티마이저 모델을 제시하고 있다.

  • PDF

Item Dependency Map을 기반으로 한 개인화된 추천기법 (Personalized Recommendation based on Item Dependency Map)

  • 염선희;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2789-2791
    • /
    • 2001
  • 데이터 마이닝을 통해 우리는 숨겨진 지식, 예상되지 않았던 경향 그리고 새로운 법칙들을 방대한 데이터에서 이끌어내고자 한다. 본 논문에서 우리는 사용자의 구매 패턴을 발견하여 사용자가 원하는 상품을 미리 예측하여 추천하는 알고리즘을 소개하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트윅(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트윅에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.

  • PDF

홉필드 네트웍에서 에너지 함수를 이용한 최적 경로 탐색에 관한 연구 (Study on the Shortest Path by the energy function in Hopfield neworks)

  • 고영훈;김윤상
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.215-221
    • /
    • 2010
  • 홉필드 네트웍은 패턴 매칭과 더불어 최적화 문제를 푸는 도구로 사용될 수 있다. 특히 Zhang과 Ali는 홉필드 네트웍의 노드를 2차원으로 확장하여 최적화 문제를 해결하였다. 잠재적 브랜치의 총합인 노드의 제곱만큼 뉴런이 필요한 Ali 알고리즘은 탐색 네트워크가 커지면 많은 시간이 소요되는 단점이 있다. 본 논문에서는 Ali의 방식을 개선하여 계산량을 대폭 줄이고 효과적으로 최적 경로를 탐색할 수 있는 방식을 제안한다. 효과적인 최적 경로 탐색을 위하여 2단계로 구분하여 진행된다. 1단계에는 홉필드 네트웍을 2단계에는 eSPN 알고리즘을 사용하여 최적 경로를 탐색할 수 있다. 제안된 방식은 샘플 네트웍을 통하여 최적 경로 탐색이 확인되었으며, Ali 알고리즘보다 빠르고 간단하여 실제 최적화에 적용하기기 용이하다. 특히, 네트웍의 브랜치 비용이 변화할 경우에도 홉필드 네트웍의 연결 시냅스가 아닌 입력 바이어스를 조정하므로 동적으로 변화하는 네트웍의 최적 경로 탐색에도 유용하다.

홉필드 네트워크를 이용한 FOV 분할 (Partitioning of Field of View by Using Hopfield Network)

  • 차영엽;최범식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.667-672
    • /
    • 2001
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.

  • PDF