• Title/Summary/Keyword: 혼합 모래

Search Result 353, Processing Time 0.031 seconds

Evaluation of Strength and Durability of Casein-cemented Sand (카제인으로 고결된 모래의 강도 및 내구성 평가)

  • Park, Sung-Sik;Woo, Seong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • About 3% of Casein is included in milk and it accounts for 80% of milk's protein. It has an adhesive property when mixed with calcium hydroxide and sodium hydroxide solutions. It has been usually used to bond woods under dry condition but becomes weak when exposed to moisture. Such weakness is very critical when casein is applied for soil cementation under groundwater condition. Therefore, this study was aimed to protect such weakness by changing or adding certain ingredients of casein adhesive. Two types of cemented specimens were prepared with Nakdong river sand and tested for unconfined compressive strength and durability. Each specimen was mixed with casein or cement. Ingredients of casein binder suggested by the University of Wisconsin, which is called a standard casein recipe, was also prepared. This study tried 6 different types of casein binder recipe. Among them, one with 30% hydroxide calcium increase and 50% hydroxide sodium decrease compared with the standard casein was most effective. Based on the most effective casein recipe, cemented sand with 1-4% of casein ratio was prepared and tested. The unconfined compressive strength and durability index were 6,253kPa and 92% for the specimen with 4% of casein ratio and 1,500kPa and 62% for the one with 8% of cement ratio. Therefore, casein cemented sand showed better performance. In addition, over 3% of casein cemented sand had over 80% durability index.

The Effect of Using Mixed Crushed Sand and Natural Sand in the Qualities of Concrete (부순모래와 천연모래 혼합사용이 콘크리트의 품질에 미치는 영향)

  • Ryu Gum Sung;Koh Kyung Taeg;Park Jung Jun;Kim Ki Hun;Han Cheon Goo;Lee Jang Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.459-462
    • /
    • 2005
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river and the growing construction demand which exhausted high-quality sand sources around large cities and incited the use of low grade aggregates like shore sand and sea sand that can be supplied in natural state. Moreover, the most sensitive aspect highlighted by the unstability of aggregate supply is the quality. The extreme insufficiency of quality criteria about the materials currently used as substitute aggregates and about concrete mixed with such materials is also critical. This study investigated influence of qualities of concrete which is using mixed crushed sand and natural sand

  • PDF

An Experimental Study on the Engineering Properties and B.P Test of Ready Mixed Concrete Using EEZ Sand and Crush Sand (부순모래와 EEZ모래를 혼합사용한 레미콘의 B.P실험 및 공학적 특성에 관한 연구)

  • Shin, Seung-Bong;Kim, Young-Sun;Kim, Young-Duck;Lee, Sung-Yon;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.105-108
    • /
    • 2006
  • Recently, trouble of sand supplying is occurred according to exhaustion of natural sand resources. Therefore various measures are proposed for solution of trouble of sand supply and crushed sand among measures is used as one of most universal measures. But because crushed sand have poor particle shape and plenty of mikes micro particle, the quality of concrete using crushed sand deteriorated. Therefore, this study evaluated engineering property of concrete with replacement ratio of crushed sand and EEZ sand applied evaluation result to fundamental data for quality control of concrete using crushed sand and EEZ sand and The result of this study have shown that quality of concrete using crushed sand and EEZ sand and The compressive strengh of concrete up to 50, 70% EEZ sand replacement by crush sand, nearly equal to that of general sand.

  • PDF

Experiments of Oyster-shell Mixed with Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 지반개량을 위한 굴패각-모래 혼합토 실험연구)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Chae, Kwang-Seok;An, Young-Chon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.162-169
    • /
    • 2004
  • In order to investigate a recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including N-value, confined compression and shear strength for oyster shell mixed soils were quantitatively examined. Experimental results show that the oyster shell mixed soils are lighter than sand in weight, and have similar characteristics of shear strength with sandy soils. Based on the experimental results, it is highly judged that crushed oyster-shell can be a substitute of sand as the SCP method.

  • PDF

Compression and Tensile Characteristics of Lightweight Air-Trapped Soil (경량기포토의 압축 및 인장 특성)

  • Lee, Young-Jun;Kim, Sung-Won;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.59-69
    • /
    • 2010
  • This study is experimentally investigated for characteristics of lightweight air-trapped soils with uniform quality. Previously, EPS (Expanded PolyStyrene) blocks are often used as lightweight embankment, but many problems such as the level difference and cracks were caused by plastic (creep) deformation. So, a new material development is urgent. By means of alternatives, lightweight air-mixed soil using in-situ soils has been developed and applied to fields. In comparison with EPS block, lightweight air-mixed soil has less plastic (creep) deformation in long period, but the strength characteristics are different according to the soils where they are obtained. Therefore, the quality management of lightweight air-mixed soil is very difficult. Therefore in this study, characteristics of lightweight air-trapped soil using a manufactured sand with uniform quality are investigated. To found out the compression and tensile characteristics of lightweight air-tapped soils, unconfined compression test and splitting tensile test are conducted on the specimens prepared with different unit weight, cement-sand ratio and air-pore.

Mechanical Characteristics of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착 잔토를 재활용한 지중전력구조물 뒷채움재의 역학적 특성)

  • Cheon, SeonHo;Jeong, Sangseom;Lee, DaeSoo;Kim, DaeHong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.303-312
    • /
    • 2006
  • This study is to evaluate the mechanical characteristics of flowable backfill and offer a guide line of mixture proportion based on soil types for constructing underground power utilities. Flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM are reduced equipment costs, faster construction, re-excavation in the future, and the ability to place materials in confined spaces, which are narrow parts or perimeters of underground power cables nearly impossible for compaction. The flowable slurry mixed with 17 soils and 6 accelerated mixtures in the laboratory were evaluated for flowability and unconfined compressive strength to meet the target values of this study.

Applicability of screenings for shotcrete's combined aggregates (숏크리트용 혼합골재로서 스크리닝스의 활용성 연구)

  • Han, Seung-Hwan;Yoo, Tae-Seok;Kim, Nag-Young;Kim, Hong-Jong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.149-160
    • /
    • 2013
  • In the mix proportion of shotcrete, it was analyzed as required in terms of eco-friendly technology to take advantage of the screenings. Screenings of recycling can be a solution in order to overcome the quality degradation due to the recent lack of good quality sand as well as the utilization of waste materials. Five regional screening and screening replaced fine aggregates for physical characteristics were analyzed to evaluate the usability screenings as shotcrete's combined aggregate. It was analyzed the effect of particle size distribution in the combined aggregate for shotcrete and maximum replacement was estimated according to the type of screenings.

Application of Discoll Method to Blend Fine Aggregate for Concrete (콘크리트용 잔골재 혼합을 위한 Driscoll 방법의 적용)

  • Lee, Seong Haeng;Ham, Hyeong Gil;Kim, Tae Wan;Oh, Yong Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2011
  • Recently depletion of natural resources makes a deficiency of sand aggregation in the concrete works. In this study, the quality characteristics of concrete and aggregate according to blending fine aggregate in the river sand and the crash sand was analyzed by Normal method and Driscoll method which has used mixing of fine aggregate for asphalt mostly. Application of Discoll method to blend fine aggregate for concrete was studied in the first step to blend fine aggregates concrete. The fineness modulus, grading, slump, air content and compressive strength were tested by the two method, the results of Driscoll method was very similar to degree of err limits in comparison with those of Normal method in the same condition. As a result, Driscoll method is reasonable to use the fine aggregates mixture for concrete in river sand and crash sand.

A Study on the Effect of Grain Content and Size on Mechanical Properties of Artificial Sedimentary Rocks (인공 퇴적암의 모래입자 크기와 함량이 역학적 성질에 미치는 영향에 관한 연구)

  • Byun, Hoon;Fereshtenejad, Sayedlireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.156-169
    • /
    • 2018
  • The relationship between the mechanical and textural properties of sedimentary rocks has been studied for decades. However, inconsistencies in the results have arisen from both the inhomogeneity of natural rocks and the difficulties encountered in controlling just one textural factor of interest in each experiment. This work produced artificial sedimentary rocks to enable control of every independent parameter at all times. Their homogeneity lowered the deviation of the results, and thus they produced clearer correlations than for natural rocks. The samples were made by mixing bassanite powder with water and silica sand, which produced rocks consisting of sand and gypsum cement. The effect of grain content and size on mechanical properties such as uniaxial compressive strength, Young's modulus, and seismic velocity was estimated. Increasing grain content lowered the compressive strength but raised Young's modulus and seismic velocity. Overall, grain size did not linearly affect the mechanical properties of the samples, but affected them in some way. In future, these results can be compared and integrated with similar experiments using different cement or grain types. This should allow comparison of the effects of the rock constituents themselves and their interactions, with applicability to all kinds of sedimentary rocks.

Effect of The Fused Siliceous Materials on Rice Plant (수도(水稻)에 대(對)한 합성규산물질(合成珪酸物質)의 효과(效果))

  • Lee, Y.H.;Han, K.H.;Lim, S.U.
    • Applied Biological Chemistry
    • /
    • v.14 no.3
    • /
    • pp.183-189
    • /
    • 1971
  • The studies reported herein were conducted to inquire the effect of fused siliceous materials which mixed with sand and quartz added calcium fertilzer on rice grown on low available silica content soil. The applied nitrogen level were examined for the two plots, nitrogen 10kg and 20kg per 10 a., and the siliceous materials(Wollastonite, Fused sand and Fused quartz) were applied as levels to 100kg, 300kg and 500kg per 10a. in the pots. The results are summerized as follows; 1. The available silica content solved in N/2 HCl solution of fused sand was more than of fused quartz but the silica solubility in 2% citric acid of fused quartz were higher than other. 2. The absorbed silica content by plant grown on the fused quartz plot was the highest among other siliceous materials and of fused sand and natural wollastonite were at almost equal. The ratio of absorbed silica of natural wollastonite was highest among them and in fused materials, the quartz was higher than sand. 3. The productivity of rice was increased by percentage of filled grain, weights of 1000 grains, and number of spikelets on account of the large quantity of the silica absorbed by plant Especially fused quartz showed the highest productive effect among siliceous materials and natural wollastonite and fused sand were similar effect. 4. From the above results. the fused quartz was selected as expelled siliceous fertilizer on rice plant among them and the fused sand was equal effect to natural wollastonite.

  • PDF