• Title/Summary/Keyword: 혼합토층

Search Result 24, Processing Time 0.028 seconds

A model study for the rational classification of mixed soil layer (혼합된 토층의 합리적 분류를 위한 모델 연구)

  • Kim, Byongkuk;Jang, Seungjin;Son, Inhwan;Kim, Joonseok
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.194-202
    • /
    • 2018
  • Purpose: It is necessary to set up a standardized method for classifying mixed soil layer that contains sand, gravel and boulder for engineering purposes. Method: Different size of soils was classified mixed soil layer by suggests unified soil classification method. Results: This paper suggests unified soil classification model for different size of soils where many authorities have their own system. Conclusion: Soil stratum classification method using appearing frequencies of gravels and weight ratio of boulders could be used to judgement in many cases.

불포화 층상 해안 대수층 내에서의 밀도 의존적 지하수 유동 및 염분 이동에 대한 유한 요소 모델링

  • 정병주;김준모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.342-346
    • /
    • 2002
  • 불포화 층상 해안 대수층 내에서의 밀도 의존적 지하수 유동 및 염분 이동에 대한 연구를 위해 하나의 지하수 유동-용질 이동 연동 수치 모델이 제시되었다. 이 수치 모델은 밀도 의존적 지하수 유동 지배 방정식, 염분 이동 지배 방정식 및 농도와 밀도의 관계식, 그리고 유한 요소법에 기초하여 개발되었다. 서로 다른 두가지 성질의 불포화 대수층이 고려되었다. 하나는 사질토층 위에 점토층이 존재하는 층상 대수층이고, 다른 하나는 사질토층과 점토층이 혼합된 두가지 물질로 구성된 균질화된 대수층이다. 수치모델의 결과는 층상 불균질성 (layered heterogeneity)가 해안 대수층 내에서의 밀도의존적 지하수 유동과 염분 이동에 있어서 매우 중요한 역할을 하고 있음을 보여준다. 그러한 층상 불균질성의 효과는 사질토층과 점토층과의 현저한 수리학적 및 수리역학적 성질의 차이에 기인한다 따라서 실제 해안 대수층 내에서 관찰되는 점토층을 적절히 고려하는 것이 보다 합리적고 타당한 해안 대수층내에서의 밀도 의존적 지하수 유동 및 염분 이동 해석을 가능하게 할 것이다.

  • PDF

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

Numerical Analysis of the Suction Pile Behavior with Different Lateral Loading Locations (수치해석을 통한 횡하중 위치에 따른 석션기초의 거동 분석)

  • Lee, Ju-Hyung;Kim, Dong-Wook;Chung, Moon-Kyung;Kwak, Ki-Seok;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.67-76
    • /
    • 2011
  • Numerical analyses were performed to analyze the behavior of a suction pile under lateral loads with different soil layer conditions (uniform clay layer, uniform sand layer, and multi layers consisting of clay and sand layers) and different loading locations (top, middle, and bottom of the suction pile). The results of the analyses revealed that, regardless of the soil layer conditions, the lateral resistances at the loading location of the middle of the suction pile were the maximum. For the given loading locations, the lateral resistances of the suction pile for the uniform sand layer were relatively higher than those for the multi layer. By analyzing translations and rotations of the suction pile, it was identified that the amount of translation was highly dependent on both the soil layer condition and the lateral loading location while the rotated angle varied significantly with the lateral loading location, but not much with soil layer condition.

Evaluation of Nitrogen Mineralization and Nitrification in Soil Incorporated with Wine Sludge for Pepper (시설고추 재배 시 포도주부산물의 토양의 질산화에 미치는 영향)

  • Myong Suk Shin;Joung Du Shin;Hee Chun;Yong Du Kwon;Jong Sun Park
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.219-224
    • /
    • 2001
  • This experiment was conducted to evaluate net mineralization and nitrification in rain shelter soil incorporated with wine sludge. Net mineralization and nitrification rates varied among treatments during pepper growing periods. In general, net mineralization increased up to 90 days after transplanting before its decrease during the rest growing periods. Maximum net mineralization and nitrification in upper 0-15 cm layer soil were observed in T4 at 90 days after transplanting. The greatest amount of mineralization in upper layer soil was 272.5 mg.kg$^{-1}$ at 30 days in the control and 843.3 mg.kg$^{-1}$ at 90 days after transplanting in T4. Overall, both net mineralization and net nitrification were greater in the upper layer soil than in the lower 15-30 cm layer soil.

  • PDF

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences (여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구)

  • Lee, Du-Han;Kim, Young-Joo;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF

Engineering Characteristics of Diatom Modified Soil Mixture (Diatom 혼합토의 공학적 특성)

  • Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.77-84
    • /
    • 2012
  • The engineering characteristics of natural sediments containing diatom microfossils have been investigated for their abnormal deformation and strength behavior for a few decades. The presence of disk or hollow shape diatoms causes low compressibility, high hydraulic conductivity, and high shear strength of sediments. Some of these unusual differences show the characteristic of diatom owing to the interlocking of large interparticle porosity and angular particles. This phenomenon implies the possible use of diatom as modification materials to change the engineering performance of soil mixtures. This paper describes the engineering characteristics of diatom-kaolin mixture to investigate the engineering properties of diatom modified soils using conventional geotechnical tests and elastic and electromagnetic wave propagation tests. Experimental test results show the performance improvement by increasing diatom contents and the performance degradation by the breakage of interlocking between diatom particles under high effective stress.

Leaching and Distribution of Cation in Multi-layered Reclaimed Soil Column with Intermediate Macroporous Layer (대공극층위 형성 간척지 다층토주의 양이온 용탈 및 분포)

  • Ryu, Jin-Hee;Chung, Doug-Young;Hwang, Seon-Woong;Kang, Jong-Guk;Lee, Sang-Bok;Choi, Weon-Young;Ha, Sang-Keun;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.602-609
    • /
    • 2010
  • To investigate desalinization patterns of surface reclaimed saline-sodic soil (RSSS) with subsurface layer of macroporous medium, multi-layered soil columns were constructed. For the multi-layered soil columns, gypsum was treated at the rate of 5 cmolc $kg^{-1}$ in surface (top) while coal bottom ash (CBA) was placed into intermediate layer below the gypsum-treated surface soils followed by the reclaimed saline-sodic soil as bottom layer (BL). The lengths of top soil was 30 cm long while the lengths of the CBA were 20 and 30 cm long. The saturated hydraulic conductivities (Ksat) were $0.39{\times}10^{-4}$ and $0.31{\times}10^{-4}cm\;sec^{-1}$ for RSSS(30 cm)-CBA(20 cm)-BL(20 cm) and RSSS(30 cm)-CBA(20 cm)-RSSS(20 cm), respectively while the lowest $K_{sat}$. was $0.064{\times}10^{-4}cm\;sec^{-1}$ for RSSS(30 cm)-CBA(20 cm)+BL(20 cm). The time required to reach the lowest EC in eluent, 0.3 dS $m^{-1}$ from 33.9 dS $m^{-1}$ was shorter in multi-layered soil columns with GR-CBA than that of RS-SRS, representing that rate of desalinization was greater than 99%. Exchangeable Na decreased by 94.8~96.2 %, while exchangeable Ca increased by 98~129 %.

A Study on PCP Adsorption in Various Paddy Soils of the Choongbook Area (충북지방(忠北地方) 답토양(沓土壤)에 대(對)한 PCP 흡착에 관한 연구(硏究))

  • Ok, Hwan-Suk;Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.229-240
    • /
    • 1972
  • Not only in order to determine reasonable application amounts of PCP in terms of soil texture, but also to get basic data for fish-toxicity-free treatment by estimating fish toxicity, some aspects of PCP adsorption were observed taking various paddy soils with different physico-chemical characteristics in the Choongbook Area as samples. The results obtained are summarized as follows: 1. There was a positive correlation between PCP adsorption and clay contents, total nitrogen, organic matter, cation exchange capacity, exchangeable bases, and phosphorus absorption coefficients, respectively; whereas there was a negative one between PCP adsorption and pH. Although they were not significant, it was remarkable that there was a relatively large amount of correlation between PCP adsorption and clay contents, $H^+,\;Mg^{++}$, and CEC, respectively. 2. PCP adsorption in terms of soil texture was in the order of Clay>Loam>Sandy loam. 3. Although PCP adsorption in the $H_2O_2-treated$ soils decreased remarkably, it was not proportional to the humus contents. 4. The order of PCP adsorption in the exchangeable base-treated soils was H^+-exchanged soil>$K^+-soil$>$Na^+-soil$>$Ca^{++}-soil$>Mg^{++}-soil. 5. Langmuir's and Freundlich's adsorption isotherms were applicable to the PCP adsorption, and thereby were able to be calculated maximum adsortion amounts of PCP, bond energy, and the depths of adsorption layers. 6. Maximum adsorbed amounts of PCP were 212.14 mg/100gr in Clayey loam, 97.28 to 121.59mg/100gr in Loam, and 32.92 to 91.74mg/100gr in Sandy loam, respectively. 7. The depths of mixed layers of limiting application for fish-toxicity-free treatment were 0.88cm of the Jinchun soil, the shallowest and 4.29 cm of the Naesan-ri Sandy loam, the deepest.

  • PDF