• Title/Summary/Keyword: 혼합영상분리

Search Result 89, Processing Time 0.025 seconds

Three-dimensional/two-dimensional convertible integral imaging display system using an active mask (동적 마스크를 이용한 3D/2D 변환 집적영상 디스플레이 시스템)

  • Oh, Yongseok;Shin, Donghak;Lee, Byung-Gook;Jeong, Shin-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3055-3062
    • /
    • 2014
  • 3D integral imaging technique with an active mask is capable of displaying real 3D images with high resolution in space. In this paper, we present a novel 3D/2D convertible integral imaging display system using an active mask. For the proposed method, the principles of 3D, 2D, and 3D/2D composed operations are explained according to the displayed images through two LCD panels. In 3D mode, the elemental images and the mask images are displayed in two display panels. On the other hand, the light source image and 2D image are displayed in 2D mode. In addition, 3D/2D mode is obtained using the spatial separation for 3D and 2D modes. To show the feasibility of the proposed method, we carry out the preliminary experiments and present the optical results.

An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction (배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델)

  • Kim Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.187-194
    • /
    • 2005
  • The background subtraction method is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable environment factors such as gradually changing illumination, swaying trees and suddenly moving objects , which are to be considered for an adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background by considering adaptively the various changes in the scenes, and the adaptive GMMs improving the real-time Performance were Proposed and worked. This paper, for on-line background subtraction, employed the improved adaptive GMM, which uses the small constant for learning rate a and is not able to speedily adapt the suddenly movement of objects, So, this paper Proposed and evaluated the dynamic control method of a using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction (배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어)

  • Kim, Young-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.366-369
    • /
    • 2005
  • Background subtraction is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable factor such as gradually changing illumination, swaying trees and suddenly moving objects, which are to be considered for the adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background adaptively considering the various changes in the scenes, and the adaptive GMMs improving the real-time performance were worked. This paper, for on-line background subtraction, applied the improved adaptive GMM, which uses the small constant for learning rate ${\alpha}$ and is not able to speedily adapt the suddenly movement of objects, So, this paper proposed and evaluated the dynamic control method of ${\alpha}$ using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

Design and Implementation of Multipoint VoIP using End-point Mixing Model (단말혼합 방법을 이용하는 다자간 VoIP의 설계 및 구현)

  • Lee, Sung-Min;Lee, Keon-Bae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.335-347
    • /
    • 2007
  • VoIP (Voice over IP) is a technology to transport video and voice traffic over IP networks such as Internet. Today, the VoIP technology is viewed as the right choice for providing voice, video, and data communication among various terminals over the next generation network. This paper discusses a multipoint VoIP implementation with end-point mixing model which can support multipoint conference without a conference bridge. The multipoint VoIP is implemented with SIP (Session Initiation Protocol), and supports STUN (Simple Traversal of UDP Through NATs) since it works in an asymmetric NAT (Network Address Translator) environment. The characteristics of this paper are as follows. It is possible that all terminals in the hierarchical conference don't receive the duplicated media information because we use the end-point mixing model with the new media processing module. And, the paper solves the problem that the hierarchical conference session should be separated into several sessions when a mixing terminal terminates the hierarchical conference session.

  • PDF

Automatic Extraction of UV patterns for Paper Money Inspection (지폐검사를 위한 UV 패턴의 자동추출)

  • Lee, Geon-Ho;Park, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.365-371
    • /
    • 2011
  • Most recently issued paper money includes security patterns that can be only identified by ultra violet (UV) illuminations. We propose an automatic extraction method of UV patterns for paper money inspection systems. The image acquired by camera and UV illumination is transformed to input data through preprocessing. And then, the Gaussian mixture model (GMM) and split-and-merge expectation maximization (SMEM) algorithm are applied to segment the image represented by input data. In order to extract the UV pattern from the segmented image, we develop a criterion using the area of covariance vector and the weight value. The experimental results on various paper money are presented to verify the usefulness of the proposed method.

Independent Component Analysis Based on Neural Networks Using Hybrid Fixed-Point Algorithm (조합형 고정점 알고리즘에 의한 신경망 기반 독립성분분석)

  • Cho, Yong-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.643-652
    • /
    • 2002
  • This paper proposes an efficient hybrid fixed-point (FP) algorithm for improving performances of the independent component analysis (ICA) based on neural networks. The proposed algorithm is the FP algorithm based on secant method and momentum for ICA. Secant method is applied to improve the separation performance by simplifying the computation process for estimating the root of objective function, which is to minimize the mutual informations of the independent components. The momentum is applied for high-speed convergence by restraining the oscillation if the process of converging to the optimal solution. It can simultaneously achieve a superior properties of the secant method and the momentum. The proposed algorithm has been applied to the composite fingerprints and the images generated by random mixing matrix in the 8 fingerprints of $256\times{256}$-pixel and the 10 images of $512\times{512}$-pixel, respectively. The simulation results show that the proposed algorithm has better performances of the separation speed and rate than those using the FP algorithm based on Newton and secant method. Especially, the secant FP algorithm can be solved the separating performances depending on initial points settings and the nonrealistic learning time for separating the large size images by using the Newton FP algorithm.

An Efficient Composite Image Separation by Using Independent Component Analysis Based on Neural Networks (신경망 기반 독립성분분석을 이용한 효율적인 복합영상분리)

  • Cho, Yong-Hyun;Park, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.210-218
    • /
    • 2002
  • This paper proposes an efficient separation method of the composite images by using independent component analysis(ICA) based on neural networks of the approximate learning algorithm. The Proposed learning algorithm is the fixed point(FP) algorithm based on Secant method which can be approximately computed by only the values of function for estimating the root of objective function for optimizing entropy. The secant method is an alternative of the Newton method which is essential to differentiate the function for estimating the root. It can achieve a superior property of the FP algorithm for ICA due to simplify the composite computation of differential process. The proposed algorithm has been applied to the composite signals and image generated by random mixing matrix in the 4 signal of 500-sample and the 10 images of $512{\times}512-pixel$, respectively The simulation results show that the proposed algorithm has better performance of the learning speed and the separation than those using the conventional algorithm based method. It also solved the training performances depending on initial points setting and the nonrealistic learning time for separating the large size image by using the conventional algorithm.

Noise Removal for Level Set based Flower Segmentation (레벨셋 기반 꽃 분할을 위한 노이즈 제거)

  • Park, Sang Cheol;Oh, Kang Han;Na, In Seop;Kim, Soo Hyung;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • In this paper, post-processing step is presented to remove noises and develop a fully automated scheme to segment flowers in natural scene images. The scheme to segment flowers using a level set algorithm in the natural scene images produced unexpected and isolated noises because the level set relies only on the color and edge information. The experimental results shows that the proposed method successfully removes noises in the foreground and background.

  • PDF

A Study on Clustering of Independent Components by Using Kurtosis (Kurtosis를 이용한 독립성분의 군집화에 관한 연구)

  • 조용현;김아람
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.569-572
    • /
    • 2003
  • 본 연구에서는 뉴우턴법에 기초한 고정점 알고리즘의 신경망 기반 독립성분분석에 kurtosis를 추가한 독립성분의 군집화를 제안하였다. 여기서 뉴우턴법의 고정점 알고리즘은 엔트로피에 기초한 목적 함수의 근을 구하는 근사화 방법으로 빠른 성분분석을 위함이고, kurtosis는 독립성분의 추출순서를 고려하지 않는 속성을 개선하기 위함이다. 제안된 기법을 256$\times$256 픽셀의 8개 혼합영상의 분리에 적용한 결과, 제안된 방법은 기존의 독립성분분석에서 분석순서를 고려치 않는 제약을 효과적으로 해결 할 수 있음을 확인하였다.

  • PDF