• Title/Summary/Keyword: 혼합계산

Search Result 1,114, Processing Time 0.037 seconds

Development of Two-dimensional Finite Volume Model Applicable to Mixed Meshes (혼합격자의 적용이 가능한 2차원 유한체적모형의 개발)

  • Kim, Byung-Hyun;Han, Kun-Yeon;Son, Ah-Long
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.109-123
    • /
    • 2011
  • In this study, 2D finite volume model, which can apply to the mixed meshes that is effective to treat the complicated topography such as a natural river, is developed. To do so, an algorithm for finding the neighbouring cell of a computational cell is introduced, and fluxes are computed using the HLLC approximate Riemann solver at each interface between a computational cell and it's neighbouring cells. Moreover, in order to numerically treat the bed slope which has important effect on the balance between flux gradients and sourte terms, different formula to compute the bed slope for rectangular and triangular mesh are applied. The developed model is applied to analyze dam-break in an experimental channel with $90^{\circ}$ bend and Malpasset dam-break in France. The two cases consist of mixed meshes and the suggested method is validated for the experimental channel and natural channel by comparison with the experimental data, field data and computed results.

Numerical Study on Soot Formation in Opposed-flow Nonpremixed Flame by Mixing Toluene (톨루엔 혼합에 따른 대향류 확산화염 내 매연 생성에 대한 수치적 연구)

  • Choi, Jae-Hyuk;Yoon, Seok-Hun;Yoon, Doo-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.139-144
    • /
    • 2012
  • A numerical simulation has been performed to investigate effects of toluene mixing on soot formation in pure ethylene opposed-flow nonpremixed flame. Mixture ratios of toluene were 3%, 5%, 10%, and 20%. Senkin code for 0-D simulation and oppdif code for 1-D simulation based on CHEMKIN III were utilized. 0-D results by senkin showed that concentrations of methyl radicals and benzene were increased with increasing toluene mixture ratio. This implied that the mixing of toluene in pure ethylene diffusion flame produces more PAHs and soot than those of pure ethylene flame. 1-D result of 10 % toluene reaction by oppdif code showed that production rate for H radical was a crucial factor for benzene formation. These results imply that methyl radical, benzene and H radical play a important role on soot formation in diffusion flames.

The Effect of Focal Length on Fuel Mixing And Combustion in One-focusing Oxygen Burner (일 초점 산소 버너의 초점 거리가 연료 혼합 및 연소에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.814-819
    • /
    • 2011
  • An Oxy-fuel combustion has been studied in order to reduce exhaust emissions and fuel consumption. The flow and flame behaviors are analyzed with focal length variation in one-focussing oxygen burner introduced in this study. Oxygen is supplied into the center of the nozzle, methane fuel is into the outer nozzle of the center, and then oxygen is again supplied into the outer of the fuel nozzle. The test conditions are 5 focal lengths of 100mm to 500mm. The mixing behaviors and temperature distributions are analyzed. The result shows that the shorter the focal length is, the longer the mixing length becomes, and the flame width and length are the biggest in the case of 300mm.

A study on propagation of uncertainties for a mixing ratio calculation by seawater intrusion (해수침투 발생 시 혼합비 계산의 오차에 관한 연구)

  • Lee, Jeonghoon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.579-584
    • /
    • 2018
  • It is crucial to determine a mixing ratio using an end-member mixing analysis when there is seawater intrusion. In this study, an error from the calculation of the mixing ratio between seawater and freshwater based on the principles of uncertainty was determined. I present the errors in the calculated mixing ratios as a function of the chemical difference between the mean seawater concentrations and standard deviations. The error is caused by: (1) the mixing ratio between seawater and freshwater; (2) the difference between the mean concentration and the standard deviation; and (3) the difference of the tracer concentration between freshwater and seawater (inversely). In particular, the error may determine hydrogeochemical process (either precipitation or dissolution) when a value of ionic delta (difference between measured and theoretical concentration) is close to zero during cation exchange by seawater intrusion.

Utilizing Calculators as Cognitive Tool in the Elementary School Mathematics (인지적 도구로서의 사칙계산기 활용)

  • Lee, Hwa Young;Chang, Kyung Yoon
    • School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.157-178
    • /
    • 2015
  • The purpose of this study was to investigate the role of calculators as a cognitive tool rather than calculating tool in learning elementary school mathematics. The calculator activities on multiplying two numbers ending with 0s or two decimal fractions and mixed four operations were developed, and exploratory lessons with the activities were implemented to three 3rd graders and two 5th graders. The results were shown that calculators provided an alternative effective learning environment: students were able to use heuristic thinking, reason inductively and successfully investigate principles of mathematics through the pattern recognition. And finally, we discussed the heuristic method through utilizing calculators.

Particle-Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices (DEM을 이용한 입자 혼합 시뮬레이션과 혼합지수들의 성능 비교)

  • Cho, Migyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.145-152
    • /
    • 2017
  • Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.

Quantitative analysis for mixing of fuel and air in burner systems (Burner 내 연료와 공기 혼합에 대한 정량적 해석)

  • 유영돈;정석우;신현동
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.56-61
    • /
    • 1995
  • 균일한 속도를 갖는 주유동장에 연료를 분사하였을때 분사된 연료가 주유동장의 공기와 혼합되는 정도를 정량적으로 설명하기 위하여 실험과 수치 계산을 실시하였다. 본 연구에서는 혼합 진전 정도를 나타내기 위하여 혼합진전변수(mixing progress variable)를 도입하여 유동조건에 따라 혼합 정도를 정량적으로 비교하였다. 주유동 속도가 일정할때 분사 속도를 증가시키면 연료가 주유동장의 공기와 혼합이 촉진됨을 알 수 있었다.

  • PDF

LES of Turbulent Mixing of Non-Reactive Flow in Gas Generator (가스발생기 비-반응 유동의 난류 혼합에 대한 LES 해석)

  • Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1171-1179
    • /
    • 2008
  • LES analysis was conducted with in-house CFD code to investigate the turbulence evolution and interaction due to turbulence ring and splash plate in the gas generator. The calculation results show that the installation of turbulence ring can introduce additional turbulences and significantly improve turbulent mixing in the downstream flow. However, the addition of splash plate in the downstream of TR(Turbulence Ring) brings totally different shape of perturbation energy and enstrophy distribution into turbulent mixing. This enhancement can be done by the formation of the intensively strong vorticity and mixing behind the plate. Pressure drop was found to be a reasonable level of about 1% or less of initial pressure in all calculation cases. Also, calculation results revealed that the variation of shape and intrusion length of TR did not greatly affect the characteristics of turbulent mixing in the chamber. Even though the effect of installation location of splash plate on the turbulent mixing was not investigated yet, calculation results conclude the addition of splash plate leads to the increase in turbulent mixing with an acceptable pressure drop.

Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes (분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.329-337
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane, which is installed at a spacer grid of the fuel assembly, plays an important role in improving convective heat transfer by generating either swirl flow in the subchannels or cross flow between the fuel rod gaps. Therefore, both the geometric configuration and the arrangement pattern of a mixing vane are important factors in determining the performance of a mixing vane. In this study, in order to examine the flow-distribution features inside a $5{\times}5$ fuel assembly with split-type mixing vanes, which was used in the benchmark calculation of the OECD/NEA, we conduct simulations using the commercial computational fluid dynamics software, ANSYS CFX R.14. We compare the predicted results with measured data obtained from the MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, we discuss the effect of the split-type mixing vanes on the flow pattern inside the fuel assembly.

An explicit solution of residence time distribution for analyzing one-dimensional solute transport in streams (하천에서 1차원 오염물질 거동 해석을 위한 정체시간분포의 양해적 해석해)

  • Byunguk Kim;Siyoon Kwon;Il Won Seo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.518-518
    • /
    • 2023
  • 자연하천에서 오염물질의 혼합 거동은 비균일한 지형학적 요인으로 인해 매우 복잡한 특성을 나타낸다. 일반적으로 오염물질 거동 모델링에서는 수체에서의 혼합을 Fick의 법칙에 따라 유속에 의한 이송과 난류에 의한 확산으로 계산하고, 국부적인 정체현상 등에 의한 non-Fickian 혼합을 야기하는 하천의 특성을 기하학적 지형 형상으로 구현하여 실제 현상에 근접한 혼합 거동을 재현한다. 하지만 계산의 효율성을 위하여 모델링의 차원을 낮추는 경우, 하천의 지형을 경계조건으로 고려할 수 없게 된다. 특히, 1차원 모델링의 경우 하천의 비균일성을 무시하고 1개의 유선으로 간주하며, 이 경우 non-Fickian 물질이동 해석을 위한 추가적인 현상학적 해석이 필요하다. 지난 50년간, non-Fickian 물질이동 해석을 위한 다양한 현상학적 모형이 제시되어 왔다. 하천을 흐름영역과 정체영역으로 구분하고 두 개의 영역 사이의 물질교환 속도를 모델링하거나, Random walk 개념으로 물질이 이동하는 경우와 이동하지 않는 경우를 확률론적으로 모델링하거나, 물질이 정체되었을 때 다시 빠져나오는 시간을 모델링하는 경우가 그 예이다. 본 연구에서는 선행연구에서 제시한 음함수 형태의 현상학적 모형을 기반으로, 수치적 반복계산 없이 상류 경계에서 임의의 형태의 농도곡선(shape-free breakthrough curve)을 갖는 오염물질운(cloud)이 일정 거리를 유하하며 발생하는 변화를 예측할 수 있는 해를 제시한다. 본 연구의 방법론은 추적법(routing procedure)을 활용한 Fickian 혼합 해석, 전달함수(transfer function) 형태의 정체시간분포 해석, 그리고 라플라스 도메인에서의 해석해 유도를 포함한다. 본 연구에서 제시된 해는 2020년 경상북도 김천시에 위치한 감천의 4.5 km 구간에서 수행한 추적자 실험의 현장 자료를 통해 정확도를 검증하여 타당성을 입증하였다.

  • PDF