• Title/Summary/Keyword: 혼재교통상황

Search Result 11, Processing Time 0.023 seconds

Analysis of Impact on Mixed Traffic Flow with Automated Vehicle Using Meta-analysis: Focusing on Uninterrupted Road (메타분석을 이용한 자율주행자동차 혼재교통류 영향 분석에 관한 연구: 연속류 도로를 중심으로)

  • Harim Jeong;Minkyoung Cho;Ilsoo Yun;Sangmin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.77-91
    • /
    • 2023
  • Recently, there has been a worldwide increase in research and development on automated vehicles for commercialization. It is expected that the use of level 3 autonomous vehicles on continuous-flow roads will be introduced and will increase. Consequently, various studies have been conducted to investigate the impact of mixed traffic flow with automated vehicles based on the market penetration rate (MPR). However, these studies have been conducted independently, and the results have shown different trends. Therefore, this study attempted a quantitative analysis of the impact of automated vehicles on mixed traffic flow on uninterrupted roads through a meta-analysis. The results showed that the effect size estimated from an MPR of 75% or higher was statistically significant.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Comparative Analysis of the Psychological State and Driving Safety for Driving within the Platoons of Trucks by Drivers Driving Performance (화물차 군집주행 간격에 따른 운전자의 운전수행능력별 심리상태 및 주행안전성 비교 연구)

  • Park, Hyun jin;Park, Jae beom;Lee, Ki young;Song, Chang jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.147-161
    • /
    • 2021
  • The purpose of this study was to investigate the psychological state and driving safety of drivers driving around the truck platoon driving. Using the driving simulator, the experimental environment was constructed with the situation of changing lanes to the platoon and driving within the platoon. We tried to qualitatively and quantitatively analyze the driver's psychological state and driving safety through simulation driving experiments. As a result, in the case of the older driver group, there were many cases where they judged themselves to be driving safely, even though they were driving dangerously in the actual lane change to the platoon or driving within the platoon. In particular, this group showed that the narrower the distance between vehicles, the greater the misrecognition. The results of this study are expected to be useful in deriving the optimum interval when the interval between platooning of trucks needs to be temporarily extended.

Assessment on Navigational Stress and Fairway' Width according to Traffic Flow (교통용량에 따른 운항위험도와 항로폭과의 관계에 관한 연구)

  • Seong, Yu-Chang
    • Journal of Navigation and Port Research
    • /
    • v.38 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • Traffic risks in fairway and harbour area increase lately according to be a sharpe change of ship's size and speed. It becomes hot issue to design a fairway, which's width is important to lower traffic risk and ensure navigational safety. The current design making a fairway and width do not focus on maneuvering motion of a large ship, but traffic risks are clear on reflecting the design of fairway, specially on width. To contact with these problems, this research proposes how to determine fairway' width in consideration of traffic volume. it suggests several situations of marine traffic congestion as like narrow channel and harbour area. here uses 162 simulations in MTS Ver.1 developed. Acquired simulation's results, environmental stress dates, figure in a model that relates with required fairway' width and allowable traffic volume. In added, suggested model compares current design with an width.

A Safety Analysis Based on Evaluation Indicators of Mixed Traffic Flow (혼합 교통류의 적정 평가지표 기반 안전성 분석)

  • Hanbin Lee;Shin Hyoung Park;Minji Kang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.42-60
    • /
    • 2024
  • This study analyzed the characteristics of mixed traffic flows with autonomous vehicles on highway weaving sections and assessed the safety of vehicle-following pairs based on surrogate safety indicators. The intelligent driver model (IDM) was utilized to emulate the driving behavior of autonomous vehicles, and the weaving sections were divided into lengths of 300 and 600 meters for analysis within a micro-traffic simulation (VISSIM). Although significant differences were found in the average speed, density, and headway between the two sections through t-test results, no significant differences were observed when comparing the number of conflicts per indicator and the vehicle-following pair. Four safety indicators were selected for the mixed traffic evaluation based on their ability to represent risk levels similar to those perceived by drivers. The safety analysis, based on the selected four indicators, determined that autonomous vehicles following other autonomous vehicles were the safest pairing. Future research should focus on integrating these indicators into a single comprehensive index for analysis.

Automated Driving Aggressiveness for Traffic Management in Automated Driving Environments (자율주행기반 교통운영관리를 위한 ADA 개념 정립 및 적용 기법 개발)

  • LEE, Seolyoung;OH, Minsoo;OH, Cheol;JEONG, Eunbi
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Emerging automated driving environments will lead to a mixed traffic flow depending on the interaction between automated vehicles (AVs) and manually driven vehicles (MVs) because the market penetration rate (MPR) of AVs will gradually increase over time. Understanding the characteristics of mixed traffic conditions, and developing a method to control both AV and MV maneuverings smoothly is a backbone of the traffic management in the era of automated driving. To facilitate smooth vehicle interactions, the maneuvering of AVs should be properly determined by various traffic and road conditions, which motivates this study. This study investigated whether the aggressiveness of AV maneuvering, defined as automated driving aggressiveness (ADA), affect the performance of mixed traffic flow. VISSIM microscopic simulation experiments were conducted to derive proper ADAs for satisfying both the traffic safety and the operational efficiency. Traffic conflict rates and average travel speeds were used as indicators for the performance of safety and operations. While conducting simulations, level of service(LOS) and market penetration rate(MPR) of AVs were also taken into considerations. Results implies that an effective guideline to manage the ADA under various traffic and road conditions needs to be developed from the perspective of traffic operations to optimize traffic performances.

Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway (표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정)

  • Lim, Donghyun;Ko, Eunjeong;Seo, Younghoon;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.208-221
    • /
    • 2020
  • The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.

A Study of Location Correction Algorithm for Pedestrian Location Tracking in Traffic Connective Transferring System (교통 연계 환승 시스템의 보행자 위치 추적을 위한 보정 알고리즘 연구)

  • Jung, Jong-In;Lee, Sang-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.149-157
    • /
    • 2009
  • Tracking technologies which provide real-time and customized information through various information collecting and processing for pedestrians who use traffic connective and transferring center have been being examined. However some problems are caused due to the wide-range positioning error for some services as device installation and service place. It is also difficult to be applied to traffic linkage and transfer services because many situations can be barren. In the testbed, Gwangmyoung Station, we got some results in bad conditions such as a lot of steel construction and another communication device. Practically, conditions of the place which will be built can be worse than Gwangmyoung station. Therefore, we researched suitable Location correction algorithm as a method for accuracy to traffic connective and transferring system. And its algorithm is designed through grid coordinates, map-matching, modeling coordinates and Kalman filtering and is being implemented continuously. Also preparing for optimization of various transferring center model, we designed for simulator type algorithm what is available for deciding algorithm factor.

  • PDF

Study on Improvement Plans for Installation and Operation of Traffic Safety Facilities according to Differences in Perception Methods and Range of Autonomous Vehicles and Human Vehicles (자율주행차량과 일반차량의 인지 방식과 범위의 차이에 따른 교통안전시설 설치 및 운영 개선방안 연구)

  • Hyeokjun Jang;Eunjeong Ko;Eum Han;Kitae Jang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.311-326
    • /
    • 2023
  • This paper proposes a plan to improve the installation and operation of traffic safety facilities using a microscopic simulation by confirming the difference in the perception method and range of autonomous vehicles and human vehicles. In this study, the existing 『Traffic Safety Sign Installation·Management Guidelines』 was reviewed, and safety signs among traffic safety facilities were classified according to changes in vehicle behavior. Subsequently, for the classified facilities, the installation location of the traffic sign was changed through simulation experiments, and the optimal location was inferred to suggest an improvement plan. This study confirmed how traffic safety facilities installed based on the visibility of human drivers affect road efficiency and safety in mixed traffic flow with autonomous vehicles and human-controlled vehicles. The optimal location derived through this study is meaningful because it can be used as the basis for revising the guidelines on the installation and management of traffic safety facilities.

A Study on Installation Experiment of Pedestrian Facility Using Agent-based Pedestrian Simulation Model (행위자기반(agent-based) 보행 시뮬레이션 모델을 이용한 보행시설 설치 실험에 관한 연구)

  • Lee, Shin-Hae;Lee, Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.131-138
    • /
    • 2009
  • The purpose of this paper is the development of an agent-based pedestrian simulation model. The simulation model is based on the Cellular Automata theory. The model consists of four components: initialization, pedestrian generation, lateral movement, and front movement components. We have applied this model for experiment about pedestrian facility. In particular, we have experimented how the installation of fence is effective to resolve conflict pedestrian movements in different directions. We have found that the installation of the fence as a pedestrian facility can divide conflict moving pedestrians effectively. We have also found that the effect of the fence is bigger in slightly congested pedestrian flows than in severely congested pedestrian flows.

  • PDF