• Title/Summary/Keyword: 혼입율

Search Result 476, Processing Time 0.035 seconds

A Numerical Study on the Nozzle Geometry of a Steam Ejector (증기 이젝터의 노즐 형상에 대한 수치해석적 연구)

  • Ji, M.K.;Utomo, Tony;Jin, Z.H.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.22-27
    • /
    • 2010
  • 본 논문은 유한체적법에 근거한 CFD 분석기법을 이용하여 증기 이젝터의 성능에 대하여 구동노즐의 기하학적 형상에 따른 영향을 조사하였다. 구동노즐의 직경비를 변화시키고 또한 직경비를 일정하게하고 구동 노즐의 위치를 변화시키면서 최적의 조건을 조사하였다. 연구 결과 이젝터의 성능은 구동노즐의 직경과 노즐의 출구 위치에 의해 좌우됨을 확인하였다. 일정 노즐 면적비에 대하여 노즐 목 직경이 감소함에 따라 혼입율이 증가하는 것을 확인하였고 일정 노즐 목 직경에 대하여 면적비의 증가는 혼입율의 감소의 원인이 된다는 것을 확인할 수 있었다. 또한 혼입율은 노즐의 출구 위치에 따라 영향을 받는다는 것도 확인하였다. 혼입율은 노즐 출구의 위치가 이젝터의 상류로 이동할수록 증가하고 그 위치는 이젝터의 일정단면적부 직경(D)에 대하여 0.4D일 때 최적의 성능을 보였다.

An Experimental Study on the Curing Method and PP Fiber Mixing Ratio on Spalling Resistance of High Strength Concrete (양생요인 및 PP 섬유 혼입율 변화에 따른 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Kim, Won-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.113-119
    • /
    • 2009
  • This study is to investigate the fundamental and fireproof qualities of high strength concrete corresponding to changes in the curing factors and the PP fiber ratio. The results were as follows. For the fundamental characteristics of concrete, the fluidity was reduced in proportion to the increase in the PP fiber ratio. The compressive strength was somewhat reduced according to an increase in the PP fiber ratio. However, it had the high strength scope of more than 60 MPa at 7 days and of more than 90 MPa at 28 days. On the spalling mechanism followed by changes of the water content ratio, spalling was prevented in all combinations, except the specimen without PP fiber and subjected to 3.0% of moisture contents. When spalling was prevented at that time, the residual compressive strength ratio was 22%~41% and the mass reduction ratio was 5%~7%, which was relatively favorable. As the spalling mechanism corresponds to changes in the curing method, spalling was prevented in concrete with a PP fiber mixing ratio of more than 0.05% in the event of standard curing, and in concrete with a PP fiber mixing ratio of more than 0.10% in the case of steam curing and autoclave curing. In these cases, when spalling was prevented, the residual compressive strength ratio was 23~42% and the mass reduction ratio was 7~11%. In these results, the ease of spalling prevention in high strength concrete was inversely proportional to the water content ratio. Depending on the curing method, spalling was prevented in concrete with over 0.05% PP fiber with standard curing and in concrete with over 0.1% PP fiber with steam curing and autoclave curing.

Characteristics of Diffusion Coefficient of High Performance Concrete using GGBFS for Road Structures by Accelerating Test Method (슬래그 미분말 혼입률에 따른 도로구조물용 고성능 콘크리트의 압축강도 및 촉진 염소이온 확산 특성)

  • Han, Seong-Woo;Kim, Hong-Sam;Lee, Chan-Young;Cheong, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.885-888
    • /
    • 2008
  • In recent years, the terminology "High-Performance Concrete(HPC)" has been introduced into the construction industry. Most high-performance concretes have a high cementitious content and a low water-cementitious material ratio. The proportions of the individual constituents vary depending on local preferences and local materials. Therefore, many trial batches are usually necessary before a successful mix is developed. The objective of this experiments is to investigate the fundamental properties of high performance concrete based binary cimentitious materials such as ordinary portland cement and ground granulated blast furnace slag. The results from the study will be utilized as the basic data and guideline in making standard mixproportions and the manufacture, construction work and quality control of HPC

  • PDF

An Experimental Study on Engineering Properties of Self-healing Mortar according to PCC(Powder Compacted Capsule) Size and Mixing Ratio (PCC(Powder Compacted Capsule) 크기 및 혼입율에 따른 자기치유 모르타르의 공학적 특성에 관한 실험적 연구)

  • Jae-In, Lee;Chae-Young, Kim;Se-Jin, Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.514-522
    • /
    • 2022
  • In this study, as part of a study to improve the self-healing performance of concrete structures by applying self-healing capsules made of cementitious materials to cement composite materials, the engineering characteristics of mortars according to PCC(Powder Compacted Capsule) size and mixing ratio were compared and analyzed. For this, fluidity, compressive strength, reload test, carbonation, ultrasonic velocity, and water permeability characteristics were measured according to PCC size and mixing ratio of mortar. As a result of the measurement, the fluidity and compressive strength increased as the mixing ratio of PCC increased, and in the case of the load reload test, the healing ratio increased as the mixing ratio of PCC increased in the 03PC formulation. In the case of water permeability test, it was found that when PCC was used, the reduction ratio of water flow was up to 35 % higher than that of Plain, and when PCC with a size of 0.3 to 0.6 mm was mixed with 15 %, it was found to be effective in improving the crack healing ratio of the mortar.

Effect of Carbon Amino Silica Black Contained Superplasticizer on the Engineering Properties and Chromaticity of Black Color Concrete (카본 아미노 실리카 블랙 기반 고성능 감수제가 블랙 컬러 콘크리트의 공학적 특성 및 발색도에 미치는 영향)

  • Han, Min-Cheol;Hong, Seok-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.181-188
    • /
    • 2013
  • This paper is to investigate experimentally an effect of carbon amino silica black-superplasticizer(CASB-SP)on the engineering properties and chromaticity of black color concrete with 0.45 of W/C(water to cement). CASB-SP and carbon black were applied for pigment of the concrete. To prevent efflorescence of concrete, four different water repellent agents were also applied. As results, it was found that use of CASB-SP increased the slump and air contents. Furthermore, the use of CASB-SP increased the compressive strength. As CASB-SP dosages increased, chromaticity was well developed. For the effect of water repellent agent, the use of epoxy type was effective for protection from efflorescence. Based on test results, it was evaluated that 0.5% of CASB-SP effectively improve the concrete quality as well as enhance the chromaticity with proper dosage.

Fundamental Properties and Reduction of Autogenous Shrinkage of HPFRCC Depending on Various Fiber Contents and ERCO Dosages (섬유 및 ERCO 혼입율 변화에 따른 HPFRCC의 기초적 특성 및 자기수축 저감)

  • Jo, Sung-Jun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, because of the terrorisms or warfare, the damages of human life or facilities have been increased. Hence, the Korean government launched the research group for high performance fiber reinforced cementitious composite (HPFRCC) with increased demanding on protecting and anti-explosive structures. Therefore, in this research, to apply the HPFRCC on military facilities with optimum performance on workability and performance, the fundamental properties and reduction of autogenous shrinkage of HPFRCC with various combinations of steel and organic fiber and emulsified refined cooking oil (ERCO) were evaluated. As a result, based on the comprehensive analysis, for favorable workability, strength, and autogenous shrinkage, 1.5 % of combined fiber of short steel fiber and long organic fiber and 0.5 % of ERCO was suggested as an optimum conditions.

Evaluation of Chloride Bound Ratio in Cement Pastes by Pore Solution Analysis (세공용액분석에 의한 시멘트의 염화물 고정화율 평가)

  • 소승영;윤성진;소양섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.789-795
    • /
    • 2002
  • To evaluate the bind rate and behavior of two types chloride ion-one is the chloride ion added in mixture when un-washed sea sand is used as fine aggregate, one is the chloride ion admitted in the new version of concrete standard specification, pore solution extracted in cement paste were analyzed. The results are follow. 1 As passing the time, the chloride concentration in the pore solution decreases with the Increase in the chloride content absorbed by the hydrate products. As compared with chloride contents in mixing water, the bound ratio of chloride at 49 days is 64∼90%. 2. The bound ratio of chloride in cement paste considering evaporable water as pore solution is obtained. In case of Pl∼P3(added chloride content wt of cement 0.046∼0.16 %), the bound ratio of chloride is 91.8∼93.5 %. P4(added chloride wt of cement 0.3%) is 89.1%, but P5(added chloride wt of cement 0.617%) bound is only 77%. 3. The bound ratio of chloride to wt of cement is 0.015∼0.475% with adding chloride. In case chloride added over 0.091 % wt of cement, the bound chloride content increases 1.7∼1.8 times in spite of added chloride increase twice. The bound ratio of chloride to wt of cement decreased with the increase in the chloride content. 4. The more increase added chloride content, the more increase the bound ration of chloride. But the absolute value of chloride content in pore solution increased.

Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams (강섬유로 보강된 콘크리트 보의 전단강도에 관한 실험적 연구)

  • Kal, Kyoung-Wan;Kim, Kang-Su;Lee, Deuck-Hang;Hwang, Jin-Ha;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.160-170
    • /
    • 2010
  • Steel Fiber Reinforced Concrete (SFRC) beams has greater shear strength than typical reinforced concrete beams due to the high tensile strength of steel fibers. In this research, an experiment has been conducted to investigate the shear behavior of SFRC beams, and especially, the portion of shear resistance by uncracked compressive concrete section has been measured. Based on the test results in this study and 87 test data collected from literature, the accuracy of the existing equations for the estimation of shear strength has been evaluated. The shear strength of SFRC beams increased as more steel fibers were mixed. However, it is considered that the most efficient amount of steel fiber for enhancement of shear strength would be between 1% and 2% in that the specimen with 0.5% of steel fibers were abruptly failed after inclined cracking, and that the specimen with 2.0% of steel fibers showed a relatively low efficiency in increasing shear strength. The portion of shear resistance by the uncracked compressive concrete section was measured to be greater than 21%, and the equation proposed by Oh et al. provided the best accuracy on the estimation of shear strength of SFRC beams among the approaches evaluated in this study.

Spalling Properties of 60, 80MPa High Strength Concrete with Fiber (복합섬유(PP, NY)를 혼입한 60, 80MPa 3성분계 고강도콘크리트의 내화특성)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.3-9
    • /
    • 2010
  • Fire resistance and material properties of high-strength concrete (W/B 21.5%, 28.5%) with OPC, BS and FA were tested in this study. Main factors of the test consisted of fiber mixing ratio and W/B. Two types of fiber (NY, PP) mixed with the same weight were used for the test. The fiber mixing ratios were 0%, 0.05%, 0.1%, and 0.2% of the concrete weight. After performing the test, Under the W/B level of 21.5% and 28.5%, the spalling was effectively resisted by using the high strength concrete with fiber mixing ratios of 0.05%~0.1%. Compressive strength, flowability and air content are similar those of the fiberless high-strength concrete with the same W/B.

A Study on the Fluidity Properties and Strength Properties of Non-sintered Hwangtoh mixed with PVA Fiber (PVA섬유를 혼입한 비소성 황토 콘크리트의 유동특성 및 강도특성에 관한 연구)

  • Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • The purpose of this study is to examine the effect of variations in the mix rate of PVA fiber and the replacement ratio of non-sintering Hwangtoh on non-sintering Hwangtoh mortar and concrete mixed with PVA fiber. For water to binder ratio, mortar and concrete were both 50%, and PVA fiber mix rate was 0% and 0.3%. The replacement ratio of non-sintering Hwangtoh was 0, 25, 50 and 75(%) for mortar, and 0, 15, 30 and 50(%) for concrete. The properties of the mortar and concrete were compared and analyzed in 4 different levels, and the results can be summarized as follows. The replacement ratio of 30% of the non-sintering Hwangtoh, and the PVA fiber mix rate of 0.3% is determined to result in concrete of high quality, including strength and fluidity, and crack control by plastic shrinkage.