• Title/Summary/Keyword: 호몰로지 조건

Search Result 6, Processing Time 0.026 seconds

Truss Ooptimization Using Homology Constraints under Multiple Loadings (호몰로지 제한조건을 이용한 다중하중하의 트러스 최적설계)

  • ;;;Kim, Kyung-Keun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2800-2811
    • /
    • 1996
  • The deformation of a structure shall be called homologous, if a given geometrical relation holds, for a given number of structural points, before, during, and after the deformation. Some researchers have utilized the idea on structural design with finite element method. The approaches use the decomposition of the FEM equation or equality of eqality equations to obtain homologous deformation. However, weight reduction and response constraints such as stress, displacement or natural frequency cannot be considered by those theories. An optimization method solving the above problems is suggested to gain homologous deformation. Homology constraints can be considered under multiple loadindg conditions as well as a single loading condition. Homology index is defined for the multiple loading conditions Examples are solved to present the performances of the method.

  • PDF

계치부분군과 G-열의 일반화

  • 우무하;이기영
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.233-255
    • /
    • 2000
  • 이 논문에서 계치부분군의 일반화와 이들을 이용한 G-열의 도입과정을 다룬다. 계치부분군과 일반화된 계치부분군 그리고 호모토피군의 차이를 설명하여 몇가지 공간의 계치부분군을 계산한다. 그리고 G-열이 완전열이 되기 위한 조건들을 조사하고 이 완전성을 이용하여 계치부분군의 계산과 함수의 단사성과 그 함수의 G-열의 완전성과의 상호 관련성을 보인다. 마지막으로 G-열의 일반화와 쌍대 G-열의 다룬다.

  • PDF

Structural Homology Design Using Equality Constraints (등제한조건 함수를 이용한 구조물의 호몰로지 설계)

  • Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.872-881
    • /
    • 1996
  • The concept of homology design has been devised for the application to large telescope structure by S.v.Hoerner. It is defined that the deformation of a structure shall be called homologous, if a given geometrical relation holds, for a given number of structural points, before, during, and after the deformation. Recently, the need of homology design in the structural design has been increase due to the required precision in the structure. Some researchers have utilized the theory on the structural design with finite element method in the late 1980s In the present investigation, a simple method using geometrical equality constraints is suggested to gain homologous deformation. The previous method is improved in that the decomposition of FEM eqation, which is very expensive, is not necessary. The basic formulations of the homology design with the optimization concept are described and several practical examples are solved to verify the usefulness and validity. Especially, a back-up structure of a satellite antenna is designed by the suggested method. The results are compared with those of existing researches.

A Study on the Shape Analysis Method of Plane Truss Structures under the Prescribed Displacement (변위제약을 받는 평면트러스 구조물의 형태해석기법에 관한 연구)

  • 문창훈;한상을
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.217-226
    • /
    • 1998
  • The purpose of this study is to develop a technique for the shape analysis of plane truss structures under prescribed displacement modes. The shape analysis is performed based on the existence theorem of the solution and the Moore-Penrose generalized inverse matrix. In this paper, the homologous deformation of structures was proposed as prescribed displacement modes, the shape of the structure is determined from these various modes and applied loads. In general, the shape analysis is a kind of inverse problem different from stress analysis, and the governing equation becomes nonlinear. In this regard, Newton-Raphson method was used to solve the nonlinear equation. Three different shape models are investigated as numerical examples to show the accuracy and the effectiveness of the proposed method.

  • PDF

Design of a Nuclear Fuel Spacer Grid Considering Impact and Wear (충격과 마모를 고려한 원자로 핵연료봉 지지격자의 설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.999-1008
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods safely. Therefore, the spacer grid set should have sufficient strength for the external impact forces such as earthquake. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to flow-induced vibration. Conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined for the impact load and the fretting wear, and corresponding design parameters are selected. The overall flow of design is defined according to the application of axiomatic design. Design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. The deformation of a structure is called homologous if a given geometrical relationship holds before, during, and after the deformation. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis.

Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints (호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF