• Title/Summary/Keyword: 호르몬 수용체

Search Result 123, Processing Time 0.048 seconds

The Effects of Unpredictable Stress on the LHR Expression and Reproductive Functions in Mouse Models (실험적 마우스 모델에서 예측 불가능한 스트레스가 황체형성호르몬 수용체의 발현과 생식기능에 미치는 영향에 관한 연구)

  • Choi, Sung-Young;Park, Jin-Heum;Zhu, Yuxia;Kim, Young-Jong;Park, Jae-Ok;Moon, Changjong;Shin, Taekyun;Ahn, Meejung;Kim, Suk-Soo;Park, Young-Sik;Chae, Hyung-Bok;Kim, Tae-Kyun;Kim, Seung-Joon
    • Journal of Veterinary Clinics
    • /
    • v.31 no.5
    • /
    • pp.394-402
    • /
    • 2014
  • The objective of this study was to investigate the effect of chronic unpredictable stress on the reproductive function and ovarian luteinizing hormone receptor (LHR) expression. 9-week-old C57BL/6 female mice were randomly divided into two groups: control group and stressed group. Mice have been stressed twice a day for 35 days with 12 different stressors which were randomly selected. The results demonstrate that there is significant increase in the anxiety-related behaviors (P < 0.05), decrease body weight gain rate (P < 0.01) and decrease in the average of litter size in stressed mice compared with control group (P < 0.01). Furthermore, the rate of primary, secondary and early antral follicles in stressed mice significantly decreased (P < 0.05), whereas that of atretic follicles significantly increased compared with control mice (P < 0.01). The immunohistochemical analysis revealed that reduced LHR expression in granulosa cells of follicle and luteal cells of corpus luteum in response to chronic unpredictable stress. The western blot analysis revealed significantly decrease in LHR expression in the stressed mice ovaries compared with the control (P < 0.05). These results suggest that ovarian LHR expression affected by chronic unpredictable stress and the modulated ovarian LHR is responsible for ovarian follicular maldevelopment and reproductive dysfunction.

Differentiation and Apoptosis of the Mammalian Embryo and Embryonic Stem Cells(ESC): I. Establishment of Mouse ESC and Induction of Differentiation by Reproductive Hormones (포유동물의 배아 및 기간세포의 분화와 세포사멸 기작: I. 생쥐 배아줄기세포의 확립과 분화유도에 미치는 생식호르몬의 영향)

  • 성지혜;윤현수;이종수;김철근;김문규;윤용달
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • Embryonic stem cells(ES cells) are derived from the inner cell mass(ICM) of blastocysts, which have the potentials to remain undifferentiated, to proliferate indefinitely in vitro, to differentiate into the derivates of three embryonic germ layers. ES cells are an attractive model system for studying the initial developmental decisions and their molecular mechanisms during embryogenesis. Additionally, ES cells of significant interest to those characterizing the various gene functions utilizing transgenic and gene targeting techniques. We investigated the effects of reproductive hormones, gonadotropins(GTH) and steroids on the induction of differentiation and expressions of their receptor genes using the newly established mouse ES cells. We collected the matured blastocysts of inbred mice C57BL/6J after superovulation and co-cultured with mitotically inactivated STO feeder cells. After 5 passages, we confirmed the expression alkaline phosphatase(Alk P) activity and SSEA-1, 3, 4 expressions. The protocol devised for inducing ES differentiation consisted of an aggregation steps, after 5 days as EBs in hormone treatments(FSH, LH, E$_2$, P$_4$, T) that allows complex signaling to occur between the cells and a dissociation step, induced differentiation through attachment culture during 7 days in hormone treatments. Hormone receptors were not increased in dose-dependent manner. All hormone receptors in ES cells treated reproductive hormones were expressed lower than those of undifferentiated ES cell except for LHR expression in E$_2$-treated ES cells group. After hormone induced differentiation, at least some of the cells are not terminally differentiated, as is evident from the expression of Oct-4, a marker of undifferentiated. To assess their differentiation by gene expression, we analyzed the expression of 7 tissue-specific markers from all three germ layers. Most of hormone-treated group increased in the expression of gata-4 and $\alpha$ -fetoprotein, suggesting reproductive hormone allowed or induced differentiation of endoderm.

  • PDF

Effect of Progesterone on COX-2 Expression and Proliferation of Prostate Stromal Cell (전립선 기질세포의 증식과 COX-2 발현에 대한 프로게스테론의 영향)

  • Jung, Soo-Ryun;Kim, Sung-Han;Choi, E-Hwa;Park, Ji-Eun;Jeon, Eun-Mi;Kang, Young-Jin;Lee, Kwang-Youn;Choi, Hyoung-Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.1
    • /
    • pp.62-70
    • /
    • 2006
  • Background: Benign prostatic hyperplasia (BPH) is the most common benign tumor in older men; the etiology of this disease remains poorly understood. Testosterone and dihydrotestosterone (DHT) both act as androgen via a single androgen receptor. Testosterone is converted to DHT by $5{\alpha}$-reductase in prostatic stromal cells. Progesterone has been reported to inhibit DHT conversion; howevwe, its effect on prostatic stromal cells remains to be elucidated. Materials and Methods: In this experiment, we investigated the effect of progesterone on androgen receptor expression induced by DHT. We also tested the effect of progesterone on cyclooxygenase-2 (COX-2) expression, as well as prostate stromal cell proliferation using the cell count kit-8. Results: Progesterone did not cause an increase of prostate stromal cell proliferation. The mRNA expression of the androgen receptor and COX-2 were not changed by progesterone; the expressions of androgen receptor and COX-2 proteins were decreased by progesterone in prostate stromal cells. Conclusion: These results suggest that in prostate stromal cells, progesterone decreases androgen receptor protein expression, which results in decrement of COX-2 protein expression. This effect might be mediated by post-transcriptional regulation.

  • PDF

Corticotropin-Releasing Factor Down-Regulates Hair Growth-Related Cytokines in Cultured Human Dermal Papilla Cells (사람 모유두세포에서 코르티코트로핀분비인자에 의한 모발성장관련사이토카인의 발현 조절)

  • Lee, Eun Young;Jeon, Ji Hye;Lee, Min Ho;Lee, Sunghou;Kim, Young Ho;Kang, Sangjin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.413-421
    • /
    • 2014
  • Corticotropin-releasing factor (CRF) is involved in the stress response and there is increasing evidence that stress influences skin disease such as hair loss. In cultured human hair follicles, CRF inhibits hair shaft elongation, induces premature regression and promotes the apoptosis of hair matrix keratinocytes. We investigated whether CRF influences the dermal papilla cells (DPC) that play pivotal roles in hair growth and cycling. Human DPCs were treated with CRF, adrenocorticotropic hormone (ACTH) and cortisol, key stress hormones along the hypothalamic-pituitary -adrenal (HPA) axis for 1-24 h. Interestingly, CRF modulated the expression of cytokines related to hair growth (KGF, Wnt5a, $TGF{\beta}-2$, Nexin) and increased cAMP production in cultured DPCs. CRF receptors were down-regulated by negative feedback systems. Pretreatment of CRF receptor antagonists or protein kinase A (PKA) inhibitor prevented the CRF-induced modulation. Since the CRF induces proopiomelanocortin (POMC) expression through the cAMP/PKA pathway, we analyzed POMC mRNA. CRF stimulated POMC expression in cultured human DPCs, yet we were unable to detect ACTH levels by western blot. These results indicate that CRF operates within DPCs through CRF receptors along the classical CRF signaling pathway and CRF receptor antagonists could serve as potential therapeutic and cosmetic agents for stress-induced hair loss.

Relationship between FSH Receptor Genotype and Clinical Outcomes of IVF-ET in Infertile Korean Women (한국 불임 여성에서 난포자극호르몬 수용체 유전자형과 체외수정 및 배아이식술 임상 결과와의 관련성)

  • Moon, Mi-Hye;Choi, Hye-Won;Kim, Min-Jee;Lee, Hyoung-Song;Cha, Sun-Hwa;Song, In-Ok;Koong, Mi-Kyoung;Jun, Jin-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.1
    • /
    • pp.69-76
    • /
    • 2008
  • Objective: The purposes of this study were to determine the distribution of follicle-stimulating hormone receptor (FSHR) genotypes in infertile Korean women and to evaluate the relationship between FSHR genotypes and clinical outcomes of IVF-ET cycles. Methods: Genomic DNA was extracted from peripheral blood in 1, 020 of infertile Korean women. Genotypes of FSHR at Thr307Ala (T/A) and Asn680Ser (N/S) were screened by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Clinical outcomes related to the genotypes of FSHR were evaluated in IVF-ET cycles (n=302) with controlled ovarian hyperstimulation (COH) of infertile women under 40 years old. Results: In a population of 1, 020 infertile Korean women, the frequency of TT/NN, TA/NS and AA/SS for the major variant Thr307Ala and Asn680Ser was 44.80%, 41.96% and 10.49%, respectively. There was no significant difference in characteristics of ovarian response and clinical pregnancy rate among the major genotypes of FSHR in IVF-ET cycles with COH. However, implantation rate of AA/SS patients was significantly higher than that of TT/NN patients (24.5% vs 15.7%, p<0.05). Conclusion: This study showed that FSHR genotype was not directly associated with ovarian response in IVF-ET cycles with COH. The relationship between clinical outcomes and FSHR genotypes of patients should be substantiated by further studies.

Formation and Differentiation of Human Fetal Ovarian Follicles (태아기 사람 난포의 형성과 분화)

  • 도병록;이창주;송강원;윤현수;노성일;윤용달
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.137-145
    • /
    • 2000
  • The regulatory mechanisms of the initiation and the formation of ovarian follicles during fetal stage of mammals are largely unknown. In addition to the gonadotropins secreted from pituitary, various growth factors, and steroid hormones are believed to be involved in the differentiation and initiation of growth of primordial follicles consisting of primordial germ cells migrated from yolk sac and streamed cells from mesonephric somatic cells. In human, primordial follicles that have already initiated differentiation at fetal stage undergo either folliculogenesis to ovulate or atresia after growth. Some of primordial follicles remain without growth for 50 years or longer. The objective of this paper is to review the mechanism of the formation, growth arrest, and initiation of primordial follicles in human fetal and neonatal ovaries.

  • PDF

Steroid and enalapril therapy - possible cause of toxic epidermal necrolysis (부신 피질 호르몬제와 안지오텐신 수용체 길항제 사용 후 발생한 독성 표피괴사 증후군)

  • Kim, Dong Wook;Jung, Da Eun;Koo, Ja Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.332-336
    • /
    • 2006
  • Toxic epidermal necrolysis (TEN) is a rare, acute and life-threatening cutaneous drug reaction. TEN is characterized by the sudden onset of extensive necrosis in the epidermis and frequent mucous membrane involvement. The pathogenesis has not yet been elucidated. In addition, no particular treatment for TEN has been established. We report a case of TEN in a 14-year-old-boy, which might have been caused by steroids with enalapril treatment for membranous nephropathy. He recovered after intravenous immunoglobulin therapy.

Promotion of Plant Growth by Submergence and the Action Network of Hormones (침수에 의한 식물의 생장 촉진과 호르몬들의 작용 네트워크)

  • Cho Young Jun;Lee Young Na;Park Woong June
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.112-117
    • /
    • 2005
  • Plants living riverside show diverse resistance responses to submergence. The promoted petiole elongation of semi-aquaitc plants, e.g., such as Ranunculus sceleratus and Rumex palustris, is one of the adaptive responses mediated by the plant hormone ethylene. The gaseous hormone is trapped in submerged plant tissues and enhances the petiole growth by increasing sensitivity of the tissues to some plant hormones including auxin. Due to the stimulated growth of petioles, the leaves finally reach the water surface and can respirate again. At the water surface, the accumulated ethylene diffuses out from the tissues to the air. As a result, the increased hormone sensitivity decreases again, and thus the growth rate reduces to the basal level as before. The increased auxin sensitivities by ethylene observed in Ranunculus sceleratus, revealed by the changes in the auxin dose-response curves, indicate the increase of affinities of the receptors to auxin. However, the molecular mechanism of the affinity regulation remains still largely unknown, because the identity of the auxin receptor is still unclear.