Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.1.112

Promotion of Plant Growth by Submergence and the Action Network of Hormones  

Cho Young Jun (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University)
Lee Young Na (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University)
Park Woong June (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University)
Publication Information
Journal of Life Science / v.15, no.1, 2005 , pp. 112-117 More about this Journal
Abstract
Plants living riverside show diverse resistance responses to submergence. The promoted petiole elongation of semi-aquaitc plants, e.g., such as Ranunculus sceleratus and Rumex palustris, is one of the adaptive responses mediated by the plant hormone ethylene. The gaseous hormone is trapped in submerged plant tissues and enhances the petiole growth by increasing sensitivity of the tissues to some plant hormones including auxin. Due to the stimulated growth of petioles, the leaves finally reach the water surface and can respirate again. At the water surface, the accumulated ethylene diffuses out from the tissues to the air. As a result, the increased hormone sensitivity decreases again, and thus the growth rate reduces to the basal level as before. The increased auxin sensitivities by ethylene observed in Ranunculus sceleratus, revealed by the changes in the auxin dose-response curves, indicate the increase of affinities of the receptors to auxin. However, the molecular mechanism of the affinity regulation remains still largely unknown, because the identity of the auxin receptor is still unclear.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, J.-G., H. Ullah, J. C. Young, M R. Sussman and A. M. Jones. 2001. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev. 15, 902-911   DOI   ScienceOn
2 Hertel, R. 1995. Auxin binding protein 1 is a red herring. J. Exp. Bot. 46, 461-462
3 Kim, Y.-S., J.-K. Min, D. Kim and J. Jung. 2001. A soluble auxin-binding protein, ABP57. J. Biol. Chem. 276, 10730-10736   DOI   ScienceOn
4 Estelle, M, 2004. Auxin response requires SCF-dependent degradation of the Aux/IAA proteins. IPGSA conference 2994-18th international conference on plant growth substances. Canberra, Austrailia
5 Vriezen, W. H., C. P. E. van Rijn, L. A. C. J. Voesenek and C. Mariani. 1997. A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J. 11, 1265-1271   DOI   ScienceOn
6 Kang, B. G. 1979. Epinasty. pp. 647-667. In Haupt, W. and M E. Feinleid (eds.), Encyclopedia of Plant Physiology, New Series Vol. 7, Springer-Verlag, Heidelberg
7 Firn, R. D. 1986. Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiol. Plant. 67, 267-272   DOI
8 Horton, R. F. and A. B. Samarakoon. 1982. Petiole growth in the celery-leaved crowfoot (Ranunculus sceleratus L.): effects of auxin-transport inhibitors. Aquat. Bot. 13, 97-104   DOI   ScienceOn
9 Taiz, L. and E. Zeiger. 2002, Plant Physiology, pp. 519-538, 3rd eds., Sinauer, Sunderland
10 Vriezen, W. H., R. Hulzink, C. Mariani and L. A. C. J. Voesenek. 1999. 1-aminocyclopropane-1-earboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. Plant Physiol. 121, 189-195   DOI   ScienceOn
11 Warner, H. L. and A. C. Leopold. 1969. Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiol. 44, 156-158   DOI   ScienceOn
12 Voesenek. L. A. C. J., M. Banga, R. H. Thier, C. M. Mudde, F. J. M. Harren, G. W. M. Barendse and C. W. P. M. Blom. 1993. Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances. Plant Physiol. 103, 783-791
13 Peeters, A. J. M., M. C. H. Cox, J. J. Benschop, R. A. M. Vreeburg, J. Bou and A. C. J. Voesenek. 2002. Submergence research using Rumex palustris as a model: looking back and going forward. J. Exp. Bot. 53, 391-398   DOI   ScienceOn
14 Hochholdinger, F., W. J. Park, M. Sauer and K. Woll. 2004. From weeds to crops: genetic analysis of root development in cereals. Trends. Plant Sci. 9, 42-48   DOI   ScienceOn
15 Samarakoon, A. B. and R. F. Horton. 1983. Petiole growth in Ranunculus sceleratus: the role of growth regulators and the leaf blade. Can. J. Bot. 61, 3326-3331   DOI
16 Rijnders, J. G. H. M, G. W. M Barendse, C. W. P. M Blom and L. A. C. J. Voesenek. 1996. The contrasting role of auxin in submergence-induced petiole elongation in two species from frequently flooded wetlands. Physiol. Plant. 96, 467-473   DOI   ScienceOn
17 Rijnders, J. G. H. M., Y.-I. Yang, Y. Kamiya, N. Takahashi, G. W. M Barendse, C. W. P. M. Blom and L. A. C. J. Voesenek. 1997. Ethylene enhances gibberellin levels and petiole sensitivity in flodding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta 203, 20-25   DOI   ScienceOn
18 Visser E. J. W., J. D. Cohen, G. W. M. Barendse, C. W. P. M. Blom and L. A. C. J. Voesenek. 1996. An ethylenemediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112, 1687-1692
19 Voesenek. L. A. C. J., J. J. Benschop, J. Bou, M. C. H. Cox, H. W. Groeneveld, F. F. Millenaar, R. A. M. Vreeburg and A. J. M. Peeters. 2003. Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann. Bot. 91, 205-211   DOI   ScienceOn
20 Banga, M., E. J. Slaa, C. W. P. M. Blom and L. A. C. J. Voesenek. 1996. Ethylene biosynthesis and accumulation under drained and submerged conditions. Plant Physiol. 112, 229-237
21 Wang, K. L.-C., H. Li and J. R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell S131-S151, Supplement 2002
22 Visser E. J. W., L. A. C. J. Voesenek, B. B. Vartapetian and M. B. Jackson. 2003. Flooding and plant growth. Ann. Bot. 91, 107-109   DOI   ScienceOn
23 Moore, T. C. 1989. Biochemistry and Physiology of plant Hormones, pp. 228-254, 2nd eds., Springer-Verlag, Heidelberg
24 Buchanan, B. B., W. Gruissem and R. L. Jones. 2000. Biochemistry & Molecular Biology of Plants. pp. 895-901, American Society of Plant Physiologists, Rockville
25 Smalle, J., M. Haegman, J. Kurepa, M. van Montagu and D. van der Straeten. 1997. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc. Natl. Acad. Sci. USA 94, 2756-2761
26 Jackson, M. B. and W. Armstrong. 1999. Formation of aerenchyrna and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274-287   DOI   ScienceOn
27 Samarakoon, A. B., L. Woodrow and R. F. Horton. 1985. Ethylene-and submergence-promoted growth in Ranunculus sceleratus L. petioles: the effect of cobalt ions. Aquat. Bot. 21, 33-41   DOI   ScienceOn
28 Voesenek, L. A. C. J., J. H. G. M. Riinders, A. J. M. Peters, H. M van de Steeg and H. de Kroon. 2004. Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology 85, 16-27   DOI   ScienceOn
29 Bloom, C. W. P. M., L. A. C. J. Voesenek, M. Banga, W. M. H. G. Engelaar, J. H. G. M. Rijnders, H. M. van de Steeg and E. J. W. Visser. 1994. Physiological ecology of riverside species: adaptive responses of plants to submergence. Ann. Bot. 74, 253-263   DOI   ScienceOn