• Title/Summary/Keyword: 형질전환 벡터

Search Result 177, Processing Time 0.03 seconds

Factors Influencing Agrobacterium-Mediated Transformation Efficiency in Perennial Ryegrass (Agrobacterium 매개에 의한 페레니얼 라이그라스의 형질전환에 영향을 미치는 요인)

  • Lee, Ki-Won;Kim, Ki-Yong;Lee, Joung-Kyong;Park, Hyung-Soo;Kim, Kyung-Hee;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.165-170
    • /
    • 2009
  • A system for the production of transgenic plants has been developed for perennial ryegrass (Lolium perenne L.) via Agrobacterium-mediated transformation. Included in this study were two factors which may affect the gene transfer efficiency: concentrations of acetosyringone (AS, 0 to 300 ${\mu}M$), and co-culture period (1 to 7 days). Both factors were very important to achieve high efficiency gene transformation in the perennial ryegrass. The highest transformation efficiency was obtained when embryogenic calli were inoculated with Agrobacterium in the presence of 100 ${\mu}M$ AS with the culture medium for 5 days. Phosphinothricin resistant calli were developed with into complete plants. GUS histochemical assay, polymerase chain reaction (PCR) and Northern blot analysis of transgenic plants demonstrated that transgenes were integrated into the genome of perennial ryegrass. Using this protocol, it was possible to obtain transformants efficiently for further study.

A Study on the Cytogenetics and Differentiation of Marine Animals (해양동물의 세포유전과 분화연구)

  • 손진기
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Present study was aimed to summary the recent reports of chromosomal technology such like a polyploidv, sex differentiation, gynogenesis, transgenic fish and gene manipulation. Triploid cells for rainbow trout and channel catfish were induced through thermal shocks of varying temperature levels and produced as a industrial use. A monosex fish with homogametic females of 15 species of high valued fish were produced by exposing to irradiation. It seemed that different irradiation was suitable to inactivate the sperm and block the formation in producing the gynogenetic diploids. Since 1985, transgenic fish have been successfully produced by microinjecting or electroporating desired foreign DNA into unfertilized or newly fertilized eggs using about 40 fish species. More recently, transgenic fish have also been produced by infecting newly fertilized eggs with pantropic, defective retroviral vectors carrying desired foreign DNA. These transgenic fish can serve as excellent experimental models for basic scientific investigations as well as in marine biotechnological applications.

  • PDF

Selection of Transgenic Potato Plants Expressing NDP Kinase 2 Gene with Enhanced Tolerance to Oxidative Stress (NDP Kinase 2 유전자를 도입한 산화스트레스 내성 형질전환 감자의 선발)

  • Li, Tang;Kwon, Suk-Yoon;Yun, Dae-Jin;Kwak, Sang-Soo;Lee, Haeug-Soon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.191-195
    • /
    • 2004
  • Arabidopsis NDPK2 (AtNDPK2) is a key singaling component that regulate cellular redox state and known to enhance multiple stress tolerance when over-expressed in Arabidopsis plant (Moon et al. 2003). In order to develop transgenic potato plants with enhanced tolerance to multiple stresses, we placed an AtNDPK2 cDNA under the control of a stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter. Transgenic potato plants (cv. Superior and Atlantic) were generated using an Agrobacterium-mediated transformation system and selected on MS medium containing 100 mg/L kanamycin. Genomic Southern blot analysis confirmed the incorporation of AtNDPK2 cDNA into the potato genome. When potato leaf discs were treated with methyl viologen (MV) at 10 $\mu$M, transgenic plants showed higher tolerance to MV than non-transgenic or vector-transformed plants. The NDPK2 transgenic potato plants will be further used for analysis of stress-tolerance to multiple environmental stresses.

Production of Herbicide-resistant Transgenic Plants from Embryogenic Suspension Cultures of Cucumber (오이의 배발생 현탁 배양세포로부터 제초제 저항성 형질전환 식물체 생산)

  • 우제욱;정원중;최관삼;박효근;백남긴;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • To develop herbicide-resistant cucumber plants (Cucumis sativus L. cv Green Angle) embryogenic suspension cultures were co-cultured with Agrobacterium tumefaciens strain LBA4404 carrying a disarmed binary vector pGA-bar. The T-DNA region of this binary vector contains the nopalin synthase/neomycin phosphotransferase Ⅱ (npt Ⅱ) chimeric gene for kanamycin resistance and the cauliflower 35S/phosphinothricin acetyltransferase (bar) chimeric gene for phosphinothricin (PPT) resistance, After co-cultivation for 48 h, embryogenic calli were placed on maturation media containing 20 mg/L PPT. Approximately 200 putatively transgenic plantlets were obtained in hormone free media containing 40 mg/L PPT. Northern blot hybridization analysis confirmed the expression of the bar gene that was integrated into the genome of five transgenic plants. Transgenic cucumber plants were grown to maturity. Mature plants in soil showed tolerance to the commercial herbicide (Basta) of PPT at the manufacturer's suggested level (3 mL/L).

  • PDF

Transformation of Plant Cells by Gene Transfer : Construction of a Chimeric Gene Containing Deleted Maize Alcohol Dehydrogenase Intron and ${\beta}-Glucuronidase$ Gene and Its Expression in Potato (유전자 도입에 의한 식물세포의 형질전환 : 옥수수 알코올 탈수소효소 유전자의 절단된 인트론 및 ${\beta}-Glucuronidase$ 유전자를 함유하는 키메라 유전자의 제조와 감자에서의 발현)

  • 이광웅
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.237-245
    • /
    • 1992
  • To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter and the effect of the deleted maize alcohol dehydrogenase I-S (Adhl-S) intron 1 on the expression of the CaMV $35S{\beta}-glucuronidase$ (GUS) gene in potato (Solanum tuberosum L. cv. Superior), we constructed a chimeric gene and transferred it into potato with Agrobacterium tumefaciens mediated method. The pLS201, a gene transfer vector of 17.7 kilobase pairs, was composed of the CaMV 35S promoter, the 249 base pairs of deleted maize Adhl-S intron 1, the GUS reporter gene, and the kanamycin resistance gene as a selectable marker for transformation. The GUS activity was examined by histochemical and spectrophotometric assay in transformed potato plants. The GUS activity was found primarily around the vascular tissue cells in stem and root. In the spectorophotometric assay, the level of GUS activity of transgenic potato transformed with CaMV 35S/249 bp of intron 1 fragment-GUS (pLS201) was compared with that of potato transformed with CaMV 35S-GUS (pBI121). The quantitative spectrophotometric assay showed that the level of GUS activity in potato transformed with pLS201 was higher in leaf, stem and root by 30-, 34- and 42-fold, respectively than those in potato transformed with pBI121. This results indicate that the inclusion of the deleted maize Adhl-S intron 1 resulted in increament of the GUS gene expression in transgenic potato.potato.

  • PDF

소변으로 EPO를 분비하는 형질전환 돼지생산

  • 박진기;이연근;민관식;임기순;성환후;양병철;이창현;이향흔;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.55-55
    • /
    • 2001
  • Erythropoietin(EPO)는 적혈구 세포 증식, 분화 및 생존에 있어서 가장 중요한 요인이다. 또한, 빈혈성저산소증에 있어서도 EPO가 중요한 역할을 한다고 알려져 있다. 태아에서 EPO 생산부위는 간이라고 알려져 있으나, 임신 120-140일에 신장으로 이동하기 시작하여 출생 후 약 40일경 이후에는 완전히 신장에서만 분비한다 EPO단백질의 분비는 오전 8시에 가장 낮고 오후 8시에 가장 높은 2중 리듬의 형태로 발현되어진다. EPO는 27개의 leader sequence와 165개의 아미노산으로 총 193개의 아미노산으로부터 분비된다. EPO단백질의 분자량은 18 kDa이나, 약 40%의 당쇄가 첨가되어있는 당단백질으로서 분자량은 30 kDa이다 N-linked 당쇄 3개(Asn-24, 38 및 83)와 O-linked 당쇄 1개(Ser 126)의 첨가부위가 존재하며, 2개의 disulfide bridges(7-161번, 29-33번)를 형성하고 있다. 이러한 당쇄의 수식은 EPO의 대사에 있어서 매우 중요하다. EPO를 가축의 소변으로부터 생산하기 위하여 생쥐의 3.6 kb UII promoter 하류에 genome hEPO와 SV 40 poly A를 연결하여 형질전환용 발현 벡터를 구축하였으며, 과배란 유기로 채란되어진 돼지의 1-세포기 수정란의 웅성전핵에 유전자를 미세주입기로 주입 후 즉시 대리모에 이식하였다. 66두에 미세주입된 1572개의 수정란을 외과적 방법으로 이식, 평균 23개의 수정란을 이식하였다. 생산된 자돈 112두중 2두(3-5, 3-15번)에서 PCR양성반응(304, 567bp)을 나타내어, 2두의 돼지로부터 소변을 회수하였다. 회수된 소변을 이용 Elisa방법으로 EPO를 분석한 결과 3-5번 돼지에서만 분만 후 지속적으로 EPO농도가 증가되었다. EPO의 최고농도는 1.1 IU/$m\ell$였으며, 이러한 결과는 CHO 세포에서의 500-1000 IU/$m\ell$의 생산량보다도 약 500-1000배정도 낮은 수준이었다. 이상을 종합하여 보면, 1) 가축에서도 생리활성물질을 소변에서 생산할 수 있는 UII promoter의 활용가능성을 제시하였으며, 2) 현재로서는 EPO의 발현량이 너무 낮아, 사용된 생쥐의 promoter를 보완할 필요성이 있다고 사료된다. 그러나, UII promoter를 이용하여 생리활성 물질을 생산할 수 있는 형질전환 돼지 생산의 성공은, 앞으로 형질전환 가축을 이용하는 활용 면에서도 더욱 더 활발할 것으로 기대된다.

  • PDF

Development of transgenic cucumbers expressing Arabidopsis Nit gene (애기장대 Nit유전자 발현 오이 형질전환체 개발)

  • Jang, Hyun A;Lim, Ka Min;Kim, Hyun A;Park, Yeon-Il;Kwon, Suk Yoon;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.198-202
    • /
    • 2013
  • To produce transgenic cucumber expressing Nit gene coffering abiotic resistance, the cotyledonary-node explants of cucumber (cv. Eunsung) were inoculated with A. tumefaciens transformed with pPZP211 or pCAMBIA2300 carrying Nit gene, that has cis-acting element involved in resistance to various abiotic environmental stresses. After co-cultivation, the procedures of selection, shoot initiation, shoot elongation, and plant regeneration were followed by cotyledonary-node transformation method (CTM, Jang et al. 2011). The putative transgenic plants were selected when shoots were grown to a length greater than 3 cm from the cotyledonary-node explants on selection medium supplemented with 100 mg/L paromomycin as a selectable agent. The confirmation of transgenic cucumber was based on the genomic PCR, Southern blot analysis, RT-PCR, and Northern blot analysis. A 105 shoots (4.12%) selected from the selection mediums were obtained from 2,547 explants inoculated. Of them, putative transgenic plants were only confirmed with 45 plants (1.77%) by genomic PCR analysis. Transgenic plants showed that the Nit genes integrated into each genome of 39 plants (1.53%) by Southern blot analysis, and the expression of gene integrated into cucumber genome was only confirmed at 6 plants (0.24%) by RT-PCR and Northern blot analysis. These results lead us to speculate that the genes were successfully integrated and expressed in each genome of transgenic cucumber.

Characterization of Transgenic Tall Fescue Plants Overexpressing NDP Kinase Gene in Response to Cold Stress (NDP Kinase 유전자를 과발현시킨 형질전환 톨 페스큐 식물체의 저온 스트레스에 대한 내성 특성)

  • Lee, Sang-Hoon;Lee, Ki-Won;Kim, Kyung-Hee;Yun, Dae-Jin;Kwak, Sang-Soo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Oxidative stress is the main limiting factor in crop productivity. To solve global environmental problems using the plant biotechnology, we have developed on the oxidative stress-tolerant transgenic tall fescue plants via Agrobacterium-mediated genetic transformation method. In order to develop transgenic tall fescue (Festuca arundinacea Schreb.) plants with enhanced tolerance to multiple environmental stresses, nucleotide diphosphate kinase gene under the control of CaMV35S promoter were introduced into genome of tall fescue plants. Proteomic analysis revealed that transgenic tall fescue not only accumulated NDP kinase 2 protein in their cells, but also induced several other antioxindative enzyme-related proteins. When leaf discs of transgenic plants were subjected to cold stress, they showed approximately 30% less damage than wild-type plants. In addition, transgenic tall fescue plants showed normal growth when transgenic plants were subjected to $4^{\circ}C$ for 3 days treatments. These results suggest that transgene is important in ROS scavenging by induction of antioxidative proteins, and could improve abiotic stress tolerance in transgenic tall fescue plants.

Effects of osmoticum treatments and shooting chances on the improvement of particle gun-mediated transformation in Phalaenopsis (유전자총을 이용한 팔레놉시스 형질전환 효율향상에 삼투압 조절제 및 발사횟수차이가 미치는 영향)

  • Roh, Hee Sun;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.216-222
    • /
    • 2014
  • This study was carried out to develop an efficient transformation protocol via particle bombardment with PLBs (protocorm-like bodies) in Phalaenopsis. To achieve this aim, osmoticum treatment and an increasing shooting chances in particle bombardment process were applied for this study. In addition, pCAMBIA3301: ORE7 vector which contains a herbicide-resistance bar gene as a selectable marker and ORE7 gene as a gene of interests were employed. With regard to the increasing chances of shooting in particle bombardment, double shooting was the best results with 1.5 ~ 2.5 times higher than those of a single or triple shooting treatment in the productioon of PPT (D-L-phosphinothricin)-resistant PLBs. However, regeneration rate of shoots in double shooting was not high as a single shooting. Further, double shooting showed 35 ~ 40% higher than that of a single shooting in the frequency of browning. Regarding effects of different osmotic treatments, combination of 0.2 M sorbitol with 0.2 M mannitol showed the best results in transformation efficiency, regeneration of transformants and reduction of browning. Putative transgenic Phalaenopsis plants were analyzed by PCR analysis and confirmed the presence of bar and ORE 7 gene. Also, real-time PCR was conducted by using 21 transgenic plants and showed only 4 plants had one copy of transgene; whereas, the other 17 plants had more than 2 copies of transgene. Transgenic phalaenopsis plants produced in this study were transferred to pots and flowered normally without morphological variations in flower and leaf.

Increment of fructan biosynthesis in rice by transformation of 1-sst and 1-fft genes isolated from jerusalem artichoke (Helianthus tuberosus L.) (돼지감자 유래 1-sst와 1-fft 유전자의 형질전환 발현에 의한 벼의 fructan 생합성 증진)

  • Kang, Kwon-Kyoo;Song, Beom-Heon;Lee, Gyong-A;Lee, Hye-Jung;Park, Jin-Ha;Jung, Yu-Jin;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.102-109
    • /
    • 2010
  • Fructan has been found to accumulate in various tissues during periods when light levels increased carbon fixation where low temperatures reduced growth rates while photosynthesis continued. In this study, we have cloned 1-sucrose:sucrose fructosyl transferase(1-sst) and 1-fructan: fructan fructosyl transferase (1-fft, a key enzyme for the synthesis of fuctan) from Jerusalem Artichoke (Helianthus tuberosus L.). The recombinant vector with 1-sst and 1-fft has been constructed under the control of 35S promoter of KJGV-B2 vector and transgenic plants obtained by Agrobacterium tumefaciens LBA4404. PCR analysis carried out on the putative transgenic plants for amplification of the coding region of specific gene (1-sst, 1-fft), and HPT genes. Transgenic lines carrying of 1-sst and 1-fft were confirmed for integration into the rice genome using Southern blot hybridization and RT-PCR. The transgenic plants in $T_2$ generation were selected and expression pattern analysis revealed that 1-sst and 1-fft were stable. This analysis confirmed the presence of low-molecular-weight fructan in the seedling of the transgenic rices. Therefore, cold tolerance and carbohydrate metabolism will be possible to develop resistant plants using the transgenic rice.