• Title/Summary/Keyword: 형상저항

Search Result 679, Processing Time 0.026 seconds

Collapse Prevention Method of Long-span Plastic Greenhouse for Heavy Snow (장스팬 비닐하우스의 폭설에 의한 붕괴방지법 연구)

  • Kim, Bo-Kyung;Lee, Swoo-Heon;Kim, Jin-Wook;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • The cases of collapse of greenhouses in rural areas have been increasing due to the unexpected heavy snow load. Studies on how to prevent the collapse of greenhouses are rare, however, and the damages are repeated annually. This studysuggests two reinforcing methods: the use of ahigh-strength tapered module, and the addition of a pre-tension tie. The high-strength tapered section is installed where the bending moment is maximum. The design of a plastic greenhouse is controlled by its strength rather than its deflection. The shape of a greenhouse resembles that of an arch system, but its actual structural behavior is the frame behavior, because it is non-continually composed of a curved element (a beam) and vertical elements (columns). This system is too weak and slender to resist a vertical load, because an external load is resisted by the moment rather than by axial force. In this study, a new method, the installation of a temporary tie at the junction of the arch and the column only during snow accumulation, is proposed. The tie changes the action of the greenhouse frame to an arch action. The arch action is more effective when the pre-tension force is applied in the tie, which results in a very strong temporary structural system during snowfall. As a result of using this high-strength tapered section, the combined strength ratio of what? decreased from 10% to 30%. In the case of the additional reinforcement with a tie, it was reduced by half.

Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with SiO2 Buffer Layer (SiO2 버퍼층을 갖는 PET 기판위에 증착한 IZTO 박막의 전기적 및 광학적 특성)

  • Park, Jong-Chan;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.578-584
    • /
    • 2017
  • $SiO_2$ buffer layer (100 nm) has been deposited on PET substrate by electron beam evaporation. And then, IZTO (In-Zn-Sn-O) thin film has been deposited on $SiO_2$/PET substrate with different RF power of 30 to 60 W, working pressure, 1 to 7 mTorr, by RF magnetron sputtering. Structural, electrical and optical properties of IZTO thin film have been analyzed with various RF powers and working pressures. IZTO thin film deposited on the process condition of 50 W and 3 mTorr exhibited the best characteristics, where figure of merit was $4.53{\times}10^{-3}{\Omega}^{-1}$, resistivity, $4.42{\times}10^{-4}{\Omega}-cm$, sheet resistance, $27.63{\Omega}/sq.$, average transmittance (400-800 nm), 81.24%. As a result of AFM, all the IZTO thin film has no defects such as pinhole and crack, and RMS surface roughness was 1.147 nm. Due to these characteristics, IZTO thin film deposited on $SiO_2$/PET structure was found to be a very compatible material that can be applied to the next generation flexible display device.

Shear Buckling Strength and Behaviors of Steel Plate Girder with Asymmetrical Shear Resistant Web Panel by Local Corrosion (국부 부식손상에 의하여 비대칭 전단저항 복부단면을 가진 강거더의 전단강도 및 거동평가)

  • Lee, Myoung Jin;Ahn, Jin Hee;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.105-118
    • /
    • 2014
  • The number of the deteriorated bridge has been sharply increased due to the increase in the bridge service period in Korea. Local corrosion problem of structural member can be occurred according to atmospheric corrosion environments based on the installation location of steel bridges. Especially, in case of the plate girder bridge, corrosion damage is concentrated on the web panel and stiffener at girder end. An asymmetrical shear resistant web section in the plate girder bridge can be caused from the local corrosion of the web panel, because local corrosion is not symmetrically occurred to the bridge. In this study, therefore, the shear buckling strength and behavior of a plate girder with asymmetrically corroded web panel was numerically evaluated using FE analysis, which was considering an aspect ratio and corrosion damage level of web panel. The shear buckling strength reduction of an asymmetrical shear resistant web panel was compared and evaluated according to corroded volume ratio for a web panel and for diagonal tension field of a web panel.

Mechanical and Electrical Properties of Electrospun CNT/PVDF Nanofiber for Micro-Actuator (미세-작동기를 위한 전기방사 CNT/PVDF 나노섬유 기반의 탄소 복합재의 기계적 및 전기적 특성 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • The electrospun PVDF containing CNT was made for fabricating materials of the actuator. The electrochemical and their actuating movement were evaluated for the actuator performance in the electrochemical environment. The actuator (which was fabricated by electrospinning) had some advantages, i.e., good dispersion and flexible properties. In the electrospinning process, the final product would have different forms based on different essential factors. In this work, electrospun nanofibers were aligned by using the drum-type collector, and the morphology was identified via the field emission-scanning electron microscope (FE-SEM). The uniform dispersion of CNT in PVDF nanofiber was observed by electron probe X-ray micro-analysis (EPMA) test. The results of tensile strength and electrical resistivity provided the aligned state. The electrospun CNT/PVDF nanofiber sheet on the aligned direction showed better mechanical and electrical properties than the case of the vertically-aligned direction. The efficiency and electrical capacities of electrospun CNT/PVDF nanofiber sheets were compared with the cast PVDF sheet for actuator application. Electrospun CNT/PVDF nanofiber sheet exhibited much better the case of actuator performance than cast neat PVDF actuator, due to the excellent electrical connecting areas.

Biocompatibility and Surface Characteristics of (Si,Mn)-HA Coated Ti-Alloy by Plasma Electrolytic Oxidation (PEO법으로 (Si,Mn)-HA 코팅된 치과 임플란트용 Ti 합금의 생체적합성 및 표면특성)

  • Gang, Jeong-In;Son, Mi-Gyeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • 생체재료의 표면은 이식과 동시에 생체계면의 역할을 하게 되어, 일련의 생물학적 반응이 시작되고 진행되는 중요한 장소가 된다. 초기에 생체계면에서 일어나는 단백질 흡착이나 염증반응을 비롯한 생물학적 반응들은 궁극적으로 임플란트의 성패를 좌우할 만큼 중요하다. 골융합을 개선하기 위한 다른 방법으로 생체불활성의 타이타늄 (Ti)과 골조직의 능동적인 반응을 이루기 위해 생체활성 표면을 부여함으로서 계면에서의 골형성 반응을 증진시키는 방법이 이용된다. 생체불활성의 Ti과 Ti합금은 골조직과 직접적인 결합을 이루지 못하므로, 골조직과의 반응을 향상하기 위해 여러 종류의 생체활성 재료를 코팅하는 방법이 연구되어 왔고, 이 중 생체의 변화와 가장 유사한 하이드록시아파타이트 코팅이 가장 대중적인 방법으로 사용되었으며 이는 초기 골형성을 촉진하는 것으로 알려졌다. 치과용 임플란트의 표면형상과 화학조성이 골 융합에 영향을 미치는 가장 중요한 인자이므로 최근의 연구동향은 이들 두 가지 표면특성을 결합함으로서 결과적으로 최적의 골세포반응을 유도하고, 골융합 후 골조직과의 micromechanical interlocking에 의해 임플란트의 안정성에 중요한 역할을 하는 마이크론 단위의 표면조도와 표면 구조를 유지하면서, 부가적으로 골 조직 반응을 능동적으로 개선할 수 있는 생체활성 성분을 부여하여 골 융합에 상승효과를 이루기 위한 표면처리법에 관해 많은 연구가 요구되어지고 있다. 따라서 골을 구하는 원소인 망간과 실리콘으로 치환된 하이드록시아파타이트를 플라즈마 전해 산화법으로 코팅하여 세포와 잘 결합할 수 있는 표면을 제공함으로써 골 융합과 치유기간을 단축시킬 수 있을 것으로 사료된다. 실험방법은 시편은 치과 임플란트 제작 합금인 Ti-6Al-4V ELI disk (grade 5, Timet Co., USA; diameter, 10 mm, thickness, 3 mm)이며, calcium acetate monohydrate, calcium glycerophosphate, manganese(II) acetate tetrahydrate, sodium metasilicate을 설계조건에 따라 혼합 제조된 전해질 용액을 이용하여 플라즈마 전해 산화법으로 표면 코팅을 실시하였다. 각 시편의 플라즈마 전해시 전압은 280V로 인가하였고, 전류밀도는 70mA로 정전류를 공급하여 해당 인가전압 도달 후 3분 동안 정전압 방식을 유지하였다. 코팅된 피막 표면을 주사전자현미경과 X-선 회절분석을 통하여 미세구조 및 결정상을 관찰하였다. 또한 코팅된 표면의 생체활성 평가는 정량적으로 평가하기 위해 동전위시험과 AC 임피던스를 통하여 시행하였다. 분극거동을 확인하기 위해 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내 환경과 유사한 $36.5{\pm}1^{\circ}C$의 0.9 wt.% NaCl에서 실시하였다. 전기화학적 부식 거동은 potentiodynamic 방법으로 조사하였고 인가전위는 -1500 mV에서 2000 mV까지 분당 1.67 mV/min 의 주사속도로 인가하여 시험을 수행하였다. 임피던스 측정은 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하였으며, 측정에 사용한 주파수 영역은 10mHz ~ 100kHz 까지의 범위로 하여 조사하였고 ZSimWin(Princeton applied Research, USA) 소프트웨어를 사용하여 용액의 저항, 분극 저항 값을 산출하였다. 망간의 함량이 증가할수록 불규칙한 기공을 보였으며, 실리콘은 $TiO_2$ 산화막 형성을 저해하는 경향을 확인할 수 있었다. 단독으로 표면을 처리한 경우보다 두 가지 원소를 이용해 복합 표면처리를 시행한 경우가 내식성이 좋아 임플란트과의 골 유착에 긍정적인 영향을 미칠 것으로 사료된다.

  • PDF

Analysis of Transient Potential Rises of Horizontal Ground Electrodes Considering the Frequency-Dependent of Soil (토양의 주파수의존성을 고려한 정보통신설비용 수평접지전극의 과도전위상승 분석)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.147-153
    • /
    • 2016
  • The lightning protection of information and communication facilities is very important factor to improve a reliability of the action of these equipment. Especially the transient potential rise of ground electrode being injected with the lightning current is to be a basic data of the dielectric strength for both power and communication facilities so that more accurate analysis should be required. The transient potential rise can be calculated from the ground impedance and the ground impedance is strongly dependent upon the shape of the ground electrode and the frequency-dependence of soil. The Debye's equation which is able to calculate the characteristics of dielectrics is used to analyze the frequency-dependent of soil. Also, the method to calculate the transient potential rise from the ground impedance is specified in this paper. In order to analyze the transient potential rise resulting from calculations with Debye's equation, TLM(transmission line method) and case of ${\rho}$(resistivity)-constant are simulated, respectively. The length of a horizontal ground electrode is 30 m and simulations were performed at 10, 100, $1000{\Omega}{\cdot}m$ with the standard lightning current waveform. In result, the transient potential rise of horizontal ground electrode calculating with Debye's equation is lower than it of other models.

A Study on the Thermal Shock Resistance of Sintered Zirconia for Electron Beam Deposition (전자빔 증착을 위한 소결체 지르코니아의 열충격 저항성 연구)

  • Oh, Yoonsuk;Han, Yoonsoo;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Ahn, Jongkee;Kim, Taehyung;Kim, Donghoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-88
    • /
    • 2015
  • Coating materials used in the electron beam (EB) deposition method, which is being studied as one of the fabrication methods of thermal barrier coating, are exposed to high power electron beam at focused area during the EB deposition. Therefore the coating source for EB process is needed to form as ingot with appropriate density and microstructure to sustain their shape and stable melts status during EB deposition. In this study, we tried to find the optimum powder condition for fabrication of ingot of 8 wt% yttria stabilized zirconia which can be used for EB irradiation. It seems that the ingot, which is fabricated through bi-modal type initial powder mixture which consists of tens of micro and nano size particles, was shown better performance than the ingot which is fabricated using monolithic nanoscale powder when exposed to high power EB.

Corrosion-Resistant High Strength S20C Element Riveted Al5052-SPFC980Y Steel Joints by Resistance Element Spot Welding (S20C 리벳된 Al5052와 SPFC980Y 강철 resistance-element 점용접 접합부의 미세조직 발달 및 고강도-부식 저항 특성)

  • Baek, Seung-Yeop;Song, Jong-Ho;Park, Seung-Youn;Song, Il-Jong;Lee, Hyun-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.794-801
    • /
    • 2021
  • This study examined the mechanical strength and corrosion resistance of a dissimilar joint with an aluminum alloy and steel by resistance element spot welding. SPFC980 steels and Al5052 alloys were applied as the base materials. S20C steels were assembled on Al5052 for the riveting element before the electric resistance welding process. The SPFC980-S20C riveted Al5052 was welded at a 6.5 kA current and 250 kgf/㎠. As a result, the engraved S20C elements formed unstable nuggets after the spot welding processes. In contrast, in the embossed S20C elements, exceptional mechanical properties, such as robust corrosion resistance and fatigue resistance, were obtained by structurally sound joints. The correlation between the microstructure and mechanical properties were examined by microstructural investigations and FEM simulations. The corrosion reliability of element spot-welded SPFC980-Al5052 dissimilar joints was investigated systematically.

Structural Analysis and Design of B-pillar Reinforcement using Composite Materials (복합소재를 활용한 B필러 강화재의 구조해석 및 설계)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Kim, Ji Wook;Yang, Min Seok;Gu, Yoon Sik;Ahn, Tae Min;Kwon, Sun Deok;Lee, Jae Wook
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • This paper aims to reduce weight by replacing the reinforcements of the B-pillar used in vehicles with CFRP(Carbon Fiber Reinforced Plastics) and GFRP(Glass Fiber Reinforced Plastics) from the existing steel materials. For this, it is necessary to secure structural stability that can replace the existing B-pillar while reducing the weight. Existing B-pillar are composed of steel reinforcements of various shapes, including a steel outer. Among these steel reinforcements, two steel reinforcements are to be replaced with composite materials. Each steel reinforcement is manufactured separately and bonded to the B-pillar outer by welding. However, the composite reinforcements presented in this paper are manufactured at once through compression and injection processes using patch-type CFRP and rib-structured GFRP. CFRP is attached to the high-strength part of the B-pillar to resist side loads, and the GFRP ribs are designed to resist torsion and side loads through a topology optimization technique. Through structural analysis, the designed composite B-pillar was compared with the existing B-pillar, and the weight reduction ratio was calculated.

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.