DOI QR코드

DOI QR Code

Analysis of Transient Potential Rises of Horizontal Ground Electrodes Considering the Frequency-Dependent of Soil

토양의 주파수의존성을 고려한 정보통신설비용 수평접지전극의 과도전위상승 분석

  • Ahn, Chang Hwan (Department of Digital Electronics, Inha Technical College)
  • 안창환 (인하공업전문대학 디지털전자과)
  • Received : 2015.11.13
  • Accepted : 2016.01.24
  • Published : 2016.02.25

Abstract

The lightning protection of information and communication facilities is very important factor to improve a reliability of the action of these equipment. Especially the transient potential rise of ground electrode being injected with the lightning current is to be a basic data of the dielectric strength for both power and communication facilities so that more accurate analysis should be required. The transient potential rise can be calculated from the ground impedance and the ground impedance is strongly dependent upon the shape of the ground electrode and the frequency-dependence of soil. The Debye's equation which is able to calculate the characteristics of dielectrics is used to analyze the frequency-dependent of soil. Also, the method to calculate the transient potential rise from the ground impedance is specified in this paper. In order to analyze the transient potential rise resulting from calculations with Debye's equation, TLM(transmission line method) and case of ${\rho}$(resistivity)-constant are simulated, respectively. The length of a horizontal ground electrode is 30 m and simulations were performed at 10, 100, $1000{\Omega}{\cdot}m$ with the standard lightning current waveform. In result, the transient potential rise of horizontal ground electrode calculating with Debye's equation is lower than it of other models.

정보통신설비의 피뢰설계는 정보통신기기 동작의 신뢰성을 향상시키기 위해서 매우 중요한 요소이다. 특히, 뇌격전류에 의한 접지전극의 과도전위상승은 전원설비 및 정보통신기기의 절연내력의 기초 자료가 되기 때문에 정확한 해석이 요구된다. 접지전극의 과도전위상승은 접지임피던스로부터 계산되어지며, 접지임피던스는 접지전극의 형상과 토양의 주파수의존성에 크게 의존적이다. 토양의 주파수의존성은 인가된 전계에 의한 토양의 유전체 특성을 해석할 수 있는 디바이식을 적용하였다. 또한 접지임피던스로부터 과도전위상승을 계산하는 방법을 제시하였다. 디바이식을 적용한 과도전위상승 결과를 분석하기 위해서 전송선로 모델과 대지저항률이 일정한 경우에 대해서 각각 시뮬레이션을 수행하였다. 수평접지전극은 30 m이며, 표준 뇌격전류파형에 대해서 대지저항률이 10, 100, $1000{\Omega}{\cdot}m$에 대해서 각각 분석하였다. 그 결과 디바이식을 적용하여 계산된 수평접지 전극의 과도전위상승이 다른 모델의 경우보다 더 낮게 나타났다.

Keywords

References

  1. K. H. Kim, "Analysis of lightning surge damage status to high-speed information communication facilities and measures for protection against lightning surges", Yonsei University, 2009.
  2. IEC 62305-3, "Protection against lightning-Part 3:Physical damage to structure and life hazard", IEC TC 81, 2012.
  3. ANSI/IEEE Std 81-1983, "IEEE Guide for measuring earth resistivity, ground impedance, and earth surface potentials of a ground system", pp.16-28, 1983.
  4. S. Visacro, R. Alipio, "Frequency dependence of soil parameters: Experimental Results, predicting formula and influence on the lightning response of grounding electrodes", IEEE Trans. Power Del., vol. 27, No. 2, pp.927-935. 2012. https://doi.org/10.1109/TPWRD.2011.2179070
  5. L. Grcev, F. Dawalibi, "An electromagnetic model for transients in grounding systems", IEEE Trans. Power Delivery, Vol.5, No.4, pp.1773-1781, 1990. https://doi.org/10.1109/61.103673
  6. D. Poljak, V. Roje, "The integral equation method for ground wire input impedance", Integral methods in science and engineering, Vol. I, U.K., pp.139-143, 1997.
  7. M. H. Oh, "Development of detection system for subsurface contamination based on the electrical properties of soil", Seoul National University, 2005.
  8. K. C. Kao, Dielectric Phenomena in Solids, Elsevier Academic Press, 2004.
  9. L. Li, Y. Yi, "Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA", Journal of Applied Geophysics, Vol.47, pp.199-215, 2001. https://doi.org/10.1016/S0926-9851(01)00065-9
  10. N. Liu, "Soil and siete characterization using electromagnetic waves", Virginia Polytechnic Institute and State University, 2007.
  11. K. S. Cole, R. H. Cole, "Dispersion and absorption in dielectrics I. Alternating current characteristics", The Journal of Chemical Physics, Vol.4, pp.341-351, 1941.
  12. D.P. Snowden, G. C. Morris, "Measurement of the dielectric constant of soil", IEEE Trans. on Nuclear Science, Vol.Ns-32, No.6, 1985.
  13. M. L. Wiebe, "Laboratory measurement of the complex dielectric constant of soils", Texas A&M University, Technical Report RSC-23, 1971.
  14. N. Wagner, K. Kupfer, E. Trinks, "A broadband dielectric spectroscopy study of the relaxation behaviour of subsoil", Proc. of the 7th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, pp.1-8, 2007.
  15. A. N. Barreto, "Complex resistivity decomposition of the dias model in partition fractions and debye functions applied to hydraulic permeability determination", North Fluminense State University, 2013.
  16. W. C. Gibson, "The method of moments in electromagnetics", Chapman & Hall/CRC, pp.33-79, 2008.
  17. S. C. Cho, "An Analysis of Transient Potential Rises of Horizontal Ground Electrical Considering the Frequency-Dependent Earth Parameters", In-ha University, 2014.
  18. C. H. Ahn, "Numerical Calculation for Impedance of horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil", Journal of the Institute of Electronics Engineers of Korea, Vol.50, No 3, pp.237-236, 2013.
  19. C. H. Ahn, "Calculation Method of Transient Potential Rises of Horizontal Ground Electrodes Depending on Injection Point of the Ground Current", Journal of the Institute of Electronics Engineers of Korea, Vol.51, No. 12, pp.197-2036, 2014.