• Title/Summary/Keyword: 형상복원

Search Result 252, Processing Time 0.025 seconds

The Prediction of Nonlinear behavior of Double Coil Shape Memory Alloy Spring (이중 나선 구조 형상기억합금 스프링 거동 예측)

  • Lee, Jong-Gu;Ahn, Sung-Min;Cho, Kyu-Jin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • The recovery force and displacement occur due to the phase transformation from the martensite phase to the austenite phase induced by the mechanical loading or thermal loading. These recovery force and displacement depend on an initial geometrical configuration of SMAs and loading conditions. Although the SMAs generally generates large recovery forces, the sufficient recovery displacement cannot be expected without a proper design strategy. The functionality of SMAs is limited due to the unbalance between the large recovery force and the small recovery displacement. This study suggests the double coil SMA spring in order to amplifying the recovery displacement induced by the phase transformation. By predicting the recovery displacement of doble coil SMA springs and one coil SMA springs induced by thermal loading, we show that the double coil SMA spring not only mitigate the unbalance of performance but also have a large recovery displacement for its recovery force than one coil SMA spring.

Free-Form Surface Reconstruction Method from Second-Derivative Data (형상이차미분을 이용한 자유곡면 형상복원법)

  • Kim, Byoung Chang;Kim, DaeWook;Kim, GeonHee
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.5
    • /
    • pp.273-278
    • /
    • 2014
  • We present an algorithm for surface reconstruction from the second-derivative data for free-form aspherics, which uses a subaperture scanning system that measures the local surface profile and determines the three second-derivative values at those local sampling points across the free-form surface. The three second-derivative data were integrated to get a map of x- and y-slopes, which went through a second Southwell integration step to reconstruct the surface profile. A synthetic free-form surface 200 mm in diameter was simulated. The simulation results show that the reconstruction error is 19 nm RMS residual difference. Finally, the sensitivity to noise is diagnosed for second-derivative Gaussian random noise with a signal to noise ratio (SNR) of 16, the simulation results proving that the suggested method is robust to noise.

A algorithm development on optical freeform surface reconstruction (광학식 자유곡면 형상복원 알고리즘 개발)

  • Kim, ByoungChang
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.175-180
    • /
    • 2016
  • The demand for accurate freeform apsheric surface is increasing to satisfy the optical performance. In this paper, we develop the algorithm for opto-mechatronics convergence, that reconstruct the surface 3D profiles from the curvarure data along two orthogonal directions. A synthetic freeform surface with 8.4 m diameter was simulated for the testing. The simulation results show that the reconstruction error is 0.065 nm PV(Peak-to-valley) and 0.013 nm RMS(Root mean square) residual difference. Finally the sensitivity to noise is diagnosed for probe position error, the simulation results proving that the suggested method is robust to position error.

The Reconstruction of the Stereo X-ray Image for Overlay Objects (중첩 물체에 대한 스테레오 X-선 영상의 3차원 형상복원)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Park, Jong-Won
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.656-659
    • /
    • 2011
  • X-선 검색장치는 대상체의 단면을 스캔하여 결과를 확인하기 때문에 정확성이 낮다는 것이 문제점으로 지적되어왔다. 이를 개선하기 위하여 선행연구로 스테레오 X-선 검색장치를 개발하여 단일 대상체에 대하여 윤곽선 정합 및 볼륨기반 형상복원 연구를 수행하였다. 본 연구에서는 스테레오 X-선 검색장치를 이용하여 두 개의 중첩된 대상체를 스캔하여 형상을 분리 복원하기 위한 연구를 진행하였다. 중첩 대상체에 대한 분리 복원을 위해 벡터정보의 거리값을 계산하여 내 외부 복셀을 분리하고 중첩부분에 대한 제거는 Z축을 기준으로 임계치를 두어 분리하는 알고리즘을 제안하였다. 3차원 스테레오 X-선 검색장치에 대한 스캔영상의 형상복원 알고리즘 개선을 통해 제한된 스캔환경에서 집적화된 대상체의 검색을 가능하도록 할 것이다.

  • PDF

Analysis of Geometrical Relations of 2D Affine-Projection Images and Its 3D Shape Reconstruction (정사투영된 2차원 영상과 복원된 3차원 형상의 기하학적 관계 분석)

  • Koh, Sung-Shik;Zin, Thi Thi;Hama, Hiromitsu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we analyze geometrical relations of 3D shape reconstruction from 2D images taken under anne projection. The purpose of this research is to contribute to more accurate 3-D reconstruction under noise distribution by analyzing geometrically the 2D to 3D relationship. In situation for no missing feature points (FPs) or no noise in 2D image plane, the accurate solution of 3D shape reconstruction is blown to be provided by Singular Yalue Decomposition (SVD) factorization. However, if several FPs not been observed because of object occlusion and image low resolution, and so on, there is no simple solution. Moreover, the 3D shape reconstructed from noise-distributed FPs is peturbed because of the influence of the noise. This paper focuses on analysis of geometrical properties which can interpret the missing FPs even though the noise is distributed on other FPs.

Fast Structure Recovery and Integration using Improved Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 빠른 구조 복원 및 융합)

  • Park, Jong-Seung;Yoon, Jong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.303-315
    • /
    • 2007
  • This paper proposes a 3D structure recovery and registration method that uses four or more common points. For each frame of a given video, a partial structure is recovered using tracked points. The 3D coordinates, camera positions and camera directions are computed at once by our improved scaled orthographic factorization method. The partially recovered point sets are parts of a whole model. A registration of point sets makes the complete shape. The recovered subsets are integrated by transforming each coordinate system of the local point subset into a common basis coordinate system. The process of shape recovery and integration is performed uniformly and linearly without any nonlinear iterative process and without loss of accuracy. The execution time for the integration is significantly reduced relative to the conventional ICP method. Due to the fast recovery and registration framework, our shape recovery scheme is applicable to various interactive video applications. The processing time per frame is under 0.01 seconds in most cases and the integration error is under 0.1mm on average.

  • PDF

Non-rigid 3D Shape Recovery from Stereo 2D Video Sequence (스테레오 2D 비디오 영상을 이용한 비정형 3D 형상 복원)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.281-288
    • /
    • 2016
  • The natural moving objects are the most non-rigid shapes with randomly time-varying deformation, and its types also very diverse. Methods of non-rigid shape reconstruction have widely applied in field of movie or game industry in recent years. However, a realistic approach requires moving object to stick many beacon sets. To resolve this drawback, non-rigid shape reconstruction researches from input video without beacon sets are investigated in multimedia application fields. In this regard, our paper propose novel CPSRF(Chained Partial Stereo Rigid Factorization) algorithm that can reconstruct a non-rigid 3D shape. Our method is focused on the real-time reconstruction of non-rigid 3D shape and motion from stereo 2D video sequences per frame. And we do not constrain that the deformation of the time-varying non-rigid shape is limited by a Gaussian distribution. The experimental results show that the 3D reconstruction performance of the proposed CPSRF method is superior to that of the previous method which does not consider the random deformation of shape.

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Relationship between Shape Recovery Characteristics & Electro Chemical Machining of Ni-Ti Shape Memory Alloy (Ni-Ti 형상기억합금의 전해가공과 형상복원 특성의 관계)

  • 최영수;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1097-1100
    • /
    • 2001
  • In this paper, the electro-chemical-machining characteristics of Ni-Ti Shape Memory Alloy(SMA) was investigated. From the experimental results, the optimal electro chemical machining conditions for satisfying the machining quality(fine surface & high recovery stress) might be confirmed. And it was concluded that optical electro chemical condition for Ni-Ti SMA could be obtained at approximately 100% current efficiency and high frequency pulse current.

  • PDF

Registration for 3D Object Reconstruction from Multiple Range Images Considering Texture (텍스처를 고려한 다중 레인지 이미지의 3차원 형상 복원을 위한 정합)

  • 최가나;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.644-646
    • /
    • 1999
  • 본 논문은 한 물체에 대해 스캔 위치 정보가 없는 여러 시점의 레인지 이미지들로부터 3차원 형상 복원을 위한 정합 알고리즘을 제안한다. 기존의 정합 방법은 스캔 위치 정보와 기하학 정보를 이용하여 레인지 이미지들을 정렬시킨 반면, 본 논문의 정합 방법은 스캔 위치와는 독립적으로 수행되며 기하학 정보와 텍스쳐 정보를 함께 이용하여 정렬시킨다. 그러므로 텍스쳐가 있는 여러 장의 레인지 이미지들로부터 3차원 형상을 보다 정확하고 효율적으로 복원할 수 있다.

  • PDF