TMGa와 유전체 장벽방전에 기초한 질소함유 활성종을 이용하여 (0001) 사파이어 기판위에 GaN 박막을 저온에서 성장시켰다. III-V 질소화합물 반도체의 에피막 성장에 있어서 암모니아는 유기금속 화학증착법에서 지금까지 알려진 가장 보편적인 질소 공급원이며 충분한 질소공급을 위해 $1000^{\circ}C$ 이상의 고온 성장이 필수적이다. GaN 박막을 비교적 저온에서 성장시키기 위하여 질소 공급원으로 암모니아 대신 유전체 장벽방전을 이용하였다. 유전체 장벽방전은 전극사이에 유전체 장벽을 설치하여 arc를 조절하는 방전이며 수 기압의 높은 공정압력보다 훨씬 높으므로 기판표면까지 전달하는데도 이점이 있다. GaN 박막의 결정성과 표면형상은 성장온도, 완충층에 따라 변화하였으며, $700^{\circ}C$의 저온에서도 우수한 (0001) 배향성을 갖는 GaN 박막을 성장할 수 있었다.
압축공기를 활용한 가스터빈 발전방식(CAES-G/T)은 태양열이나 풍력과 같은 신재생 에너지의 출력 변동성을 조절하는 유력한 수단 중 하나로 고려되고 있다. 국내에서 CAES 발전이 실용화된다면 지질여건상 암반터널식이 채택될 가능성이 크다. 암반터널식 CAES 시설에서는 압축공기 저장공간을 밀폐시키기 위한 콘크리트 플러그의 설치가 필요하므로 플러그의 형상과 크기를 결정하는 것이 중요한 설계변수가 된다. 파괴에 대한 안전율 분포와 접촉부 접촉압력 분포 분석을 통해 2가지 형태의 콘크리트 플러그에 대한 안정성 평가를 수행하였다. 주어진 지질조건에서는 테이퍼형 플러그가 쐐기형 플러그에 비해 구조적으로 안정한 것으로 나타났다. 쐐기형 플러그의 경우 측면 접촉부에서 분리현상이 예측되었고 이러한 분리면에서 압축공기의 누출 가능성과 마찰저항의 감소가 발생할 수 있음을 보여주었다.
해안 대수층은 해수와 담수가 공존하는 지역으로 상대적으로 밀도가 큰 해수가 대수층의 담수 아래에 쐐기형태로 존재하게 된다. 이러한 쐐기형태의 해수와 담수의 경계면은 압력경도의 평형에 의해 경계면이 유지되며, 해수면 또는 지하수위가 변동할 경우 해수-담수 경계면의 균형이 무너짐과 더불어 압력경도의 평행이 이루어질 때 까지 해수-담수 경계면의 이동이 계속 진행된다. 수위 변화의 주요 원인으로는 지구온난화 및 기후변화로 인한 지속적인 해수면 상승과 도서지역의 인구증가 및 산업화로 인한 무분별한 지하수의 사용 등에 의한 지하수위 저하 등을 꼽을 수 있다. 이와 같은 원인으로 해안 및 도서지역에서는 해안 대수층의 해수침투거리가 증가하여 지하수 이용에 큰 어려움을 겪고 있다. 이에 해안 대수층의 해수침투 범위 및 거리를 추정하기 위한 많은 연구들이 다양한 분야에서 지속해서 이루어지고 있지만, 서로 밀도가 다른 해수와 담수가 공존하는 해안 대수층 내의 수리특성을 명확히 파악하기에는 아직까지 미흡한 점들이 많다. 과거에는 Darcy의 법칙 및 Ghyben-Herzberg 식에 근거한 이론적인 연구들이 주로 이루어졌고, 근래에 현장관측이나 수리모형실험이 국내 외적으로 수행되고 있으나, 모든 영역의 지하수의 특성을 조사하는 것이 사실상 불가능하다. 이에 최근에는 컴퓨터 성능의 비약적인 발전과 더불어 다양한 수치해석방법에 의한 수치모델들이 개발되어 시뮬레이션에 적용되고 있다. 하지만 거의 대부분의 수치모델은 해안 대수층 수리특성을 투수계수에 의존하고 있을 뿐, 대수층 내부의 해수-담수에 의한 밀도류의 유동특성을 전혀 고려하지 못한 채 정수압에 근거한 해수-담수 경계면에 대해 모의하고 있는 정도이다. 따라서 본 연구에서는 해안 대수층 내부의 유동현상을 투수계수에 의존하는 방법에서 탈피하여 대수층 매체의 입경, 공극, 형상 등을 고려할 수 있을 뿐만 아니라, 염분 및 온도차에 의한 밀도류를 해석할 수 있는 강비선형 수치모델을 개발하여 해수침투 현상을 직접 모의한다. 나아가 대부분의 이전 연구들에서 간과하고 있는 해안지역의 대표적 물리력인 파랑과 조석의 영향이 해안 대수층의 해수침투에 미치는 영향, 해안 대수층의 지하수위 및 해수면의 수위차에 의한 해수침투 특성 그리고 이를 제어 할 수 있는 새로운 대응기술을 제안하는 것을 목적으로 한다.
수력발전 사업에 있어 Desander 구조물은 주로 고산지대 수력발전댐의 Run-of-river 형식의 발전방식에서 유사로 인한 터빈의 손상을 방지하기 위한 목적으로 설치된다. Desander의 적정 규모는 터빈의 손상을 일으킬 수 있는 유사 입경에 대해 안정적으로 침전을 시킬 수 있는 폭/길이/깊이로 평가할 수 있으며 상대적으로 Desander의 규모가 크게 설계된 경우 초기 공사비 증가하고 반대로 규모가 작게 설계된 경우 터빈의 교체 주기 단축으로 인한 유지관리비가 증가된다. 현재까지 일반적인 Desander 구조물의 설계 방식은 제거 입경의 침전 속도, 유입유량 및 깊이를 변수로 사용하여 경험식(L. Sudry method, Guicciardis method 및 Rouse method)을 통해 규모를 결정해 왔다. 하지만, 3-D 전산유체해석을 통해 유속 흐름 분석으로 직 간접적 Desander 규모의 적정성을 평가할 수 있는 현 시점에서 경험식으로부터 도출된 결과의 신뢰성과 객관성을 검증할 필요가 있다고 판단된다. 본 연구에서는 노르웨이 NSTU에서 개발한 유사의 이송 및 확산해석 기능이 내장된 범용 소프트웨어인 SSIIM을 이용하였다. SSIIM(Simulation of Sediment movements In water Intakes with Multiblock)은 개수로 흐름 상태에서 유사 이동 및 하상 변동을 분석할 수 있도록 개발된 3-D 해석 프로그램이다. SSIIM은 수치해석 방법으로 유한체적법(Finite Volume Method)를 채택하였으며 Navier-Stokes equations을 통해 유체의 흐름을 해석한다. 입력 자료는 유입 유량($m^3/sec$), 유입 유사량(kg/sec), 유출부 수위 및 해당 Desander Structure grid 자료가 사용되며 해석 결과로 Desander 내 grid 별 유속, 수위, 유사 농도 변화 등을 제공한다. 본 연구에서는 SSIIM을 이용하여 제거 목표 유사 입경의 차집 효율(Trap efficiency)로 Desander의 적정 규모를 평가 할 수 있는 설계법을 제안하며 설계 단계에서 결정되는 최소 제거유사 입자와 차집 효율에 의한 Desander의 적정 규모 평가 분석을 파키스탄 A 프로젝트를 대상으로 수행하였다. 연구 성과로 (1)SSIIM을 통해 해석된 차집 효율을 기초로 Desander의 적정 규모를 계획할 경우 경험적 방식에 비해 설계의 객관성과 신뢰성을 제고할 수 있으며 (2)3-D 수치해석을 통해 grid 별 유사농도를 확인 할 수 있어 Desander 형상과 규모에 대한 평가가 가능하다.
최근 기존의 격자방식의 해석 방법을 벗어나 해석 영역에 대한 분할을 별도로 고려치 않는 수치기법의 실무적 적용사례가 증가 하고 있으며, 이러한 방식중 SPH(Smoothed Particle Hydrodynamics) 방식이 근자에 수자원 분야에서도 도입되어 관수로 및 개수로 해석 또는 복합해석 등에 활용된 바 있다. 최초 도입된 무격자방식의 모형들은 주로 복잡한 형상을 지니는 유체기계 등에 활용성이 높았던 바, 큰 규모의 해석 도메인을 가지는 수자원 분야에서의 SPH의 실무적용 평가와 효율성의 확보를 위해서, 본 연구는 국내 댐을 시범 대상으로 하여 SPH 수치해석 툴을 적용하고자 하였다. 분석 대상댐은 국내 P댐으로서 관리수위의 변동은 크지 않으나, 댐 직상류의 만곡이 심하고 다수의 대규모 취수구를 가진 곳으로 상시 발전방류 및 수시 댐 수문방류에 의해 유체의 흐름이 2,3차원의 복잡성을 띄고있기 때문에, 3차원 전산유체역학 Tool의 적용이 적절한 것으로 판단하였다. 해석을 위해 하류경계조건을 댐축과 문비로 설정하였고 상류 1km까지를 해석의 도메인으로 설정하였다. 소요시간을 줄이기 위해 여러 번의 모의를 거쳐 입자의 평균 입경은 0.6m로 제안하고 시격은 1초 미만(평균 0.5초)로 설정하였다. 수문 및 발전방류는 해당댐의 1~2년 빈도 수준에 해당하는 $5,000m^3/s$ 이하의 유량을 기준으로 하여 모의를 수행하였다. 모의의 안정성을 확보한 이후에는 해당 댐지역의 하류영향을 고려한 문비제어를 반영한 다양한 방식의 수문운영 및 취수지점의 순간 수위 영향을 검토하였다. 그 결과로 본 모의에서는 특정한 수문의 운영 조건에서는 댐수위 계측지점과 인근 취수지점 간에도 0.2m 수준의 순간 수위차가 발생할 수 있음을 보였으며, 이는 경우에 따라 취수시설의 일시적 장애요소로 발생할 수 있음을 의미한다. 따라서, 현재의 취수구조물과 문비운영 특성에 따라 발생가능한 취수장애를 줄일 수 있는 운영조건의 탐색을 위해서 수치모의를 추가로 하였으며, 이 때 댐축 상류의 유속분포에 대한 추가 검토도 수행하였다. 다만, 댐에서 방류시 하류조건에 대한 검토는 추후 보강되어야 할 것으로 판단된다.
위어나 낙차공 같은 수공구조물 직하류부에서는 다양한 형태의 흐름조건이 발생한다. 낙차공 하류에서 발생하는 독특한 흐름형태 중 하나는 정상파형도수를 갖는 파형흐름이다. 이 연구에서는강 등(2010)이 수리실험을 수행한 바 있는 계단형 위어 하류부에서의 형성되는 파형흐름을 3차원 수치해석을 수행한다. 위어 구조물 위를 통과하는 난류흐름을 해석하기 위해서 Spalart-Allamaras 1방정식 모형을 이용한 URANS 수치모의와 DES (detached eddy simulation)을 실시하였다. 위어 주변에서의 자유수면 변동, 파상도수, 자유수면에서의 와류 그리고 바닥부근에서의 재순환 영역의 형상과 크기, 선정된 종방향 위치들에서의 흐름방향유속분포 등의 항으로 수치해석결과를 실험값과 비교하여 수치모의의 적절성과 난류모델들의 성능을 평가한다.
철도차량용 주변압기 고압권선은 고압인통선에 유기되는 이상전압과 내부공진을 발생 시킬 수 있는 다양한 주파수 대역의 고유주파수를 가진다. 공장시험은 다양한 파형과 지속시간을 지닌 이상전압의 여자가능성을 판단하는데 한계가 있다. 본 연구는 전자계과도해석프로그램(이하 EMTP)을 이용하여 고압권선 모델을 설계하고 초기 전압분포와 전압-주파수 관계 측면에서 내부공진특성을 모의분석한다. 턴 단위의 집중매개변수는 변압기 형상정보부터 계산되며, 각 레이어 단위로 합산된 서브모델은 네트워크 모델로 결합되어 EMTP의 라이브러리를 통해 구현한다. 사례연구는 주파수 변동에 따른 레이어 단위의 전압-주파수 관계 특성과 시계열 영역에서 전압 확대 및 분포 양상을 보여준다.
연소가스에 의한 내압 조건에서 필라멘트 와인딩 공법으로 제작되는 복합재 연소관은 돔에서 구조적으로 취약해진다. 본 논문에서는 압력분포비(PDR) 변화에 따른 복합재 돔의 파열압력을 비교하기 위해 유한 요소 해석을 수행하였다. 돔 내/외면 응력, 금속 보스 체적을 산출함으로써, 정량적으로 복합재 연소관의 성능을 비교하였다. 그 결과, PDR 2.5-3.0에서 파손 모드의 임계점이 존재함을 확인하였다. PDR 2.5-3.5 설계는 연소관 파열압력의 변동 없이 금속 보스 무게 감량이 가능하며, 돔 형상 및 오프닝 크기에 대해 설계 기준값이 변경되므로 해석 및 시험을 통한 규명이 필요하다.
본 연구에서는 기존의 후설치 앵커의 헤드 부분과 확장슬리브 부분을 개선한 후설치 앵커를 개발하고자 한다. 최적형상을 시뮬레이션 해석을 수행하여 후설치 행커의 확장슬리브와 헤더의 길이를 결정하였다. FEM 해석 결과, 최적 슬리브 길이(9.0mm)와 헤더 길이(3.0mm)를 선정하였다. 개선 후 후설치 앵커의 인발강도 실험 결과, 모든 실험체에서 변동계수 15%를 만족하는 것으로 나타났다. 개선 전·후의 묻힘 깊이에 따른 인발강도를 비교한 결과, 묻힘 깊이가 50mm인 경우에는 1.25배 증가하였고, 묻힘깊이가 70mm인 경우에는 1.54배 증가하였다. 고강도 콘크리트의 경우에는 묻힘 깊이가 50mm인 경우에는 1.28배 증가하였고, 묻힘깊이가 70mm인 경우에는 1.55배 증가하는 것으로 나타났다. 또한, 전단강도 실험결과, 개선 후 앵커가 내력이 1.38배 증가하는 것으로 나타났다.
이 논문에서는 공용중인 구조물의 상시 계측 자료를 사용한 온라인 유한요소 모델 업데이트 방법을 제안한다. 일반적인 최적화 방법에 기반한 기존의 방법은 최적해를 찾기까지 반복적으로 고유치 해석을 수행해야 하므로 상시 업데이트에 사용하기에는 효과적이지 못하다. 제안하는 방법은 별도의 오프라인 작업이나 사용자의 개입이 없이 자동화된 과정으로 계측과 동시에 온라인 유한요소모델 업데이트를 수행할 수 있는 새로운 방법이다. 자동화된 Cov-SSI 알고리즘을 통해 구조물의 진동 계측 신호로부터 고유진동수 및 모드 형상을 식별하고, 이를 다시 역 고유치 신경망에 입력하여 최종적으로 업데이트된 유한요소 모델의 파라미터를 추정한다. 풍하중을 받는 20층 전단 빌딩 구조 모형에 대한 수치예제를 통해 제시한 방법이 자동으로 연속적인 유한요소모델 업데이트를 할 수 있었음을 확인하였다. 또한, 계측 도중 구조물의 특성이 변화하는 시나리오에 대한 예제에서 구조물의 변화가 일어나는 시점과 변화 후 변동된 구조 모델 파라미터 값을 성공적으로 추정할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.