DOI QR코드

DOI QR Code

Performance Evaluation of Post-installed Anchor according to Sleeve Length and Header Length

슬리브 및 헤드 길이에 따른 후설치 앵커의 인발성능평가

  • 허무원 (단국대학교 건축공학과) ;
  • 채경훈 (단국대학교 건축공학과) ;
  • 안영승 ((주)윈진, 기술연구소) ;
  • 박태원 (단국대학교 건축공학과)
  • Received : 2020.11.03
  • Accepted : 2020.12.02
  • Published : 2021.04.30

Abstract

This study presents post-installed anchors whose heads and extension sleeves are improved. The optimal lengths of the extension sleeves and headers were analytically determined by simulations. As a result of analysis using Finite element method (FEM), 9.0mm and 3.0mm were determined as the optimal lengths of sleeves and headers respectively. In pull-out tests using the improved post-installed anchors, all specimens satisfied the coefficient of variation of 15%. Comparing the pull-out strengths of existing anchors and the improved anchors, it was increased by 1.25 times for anchors embedded with a depth of 50mm, and 1.54 times for 70mm. In the cases of high-strength concrete, the strengths were increased by 1.28 and 1.55 times for 50mm and 70mm respectively. Moreover, as a result of shear tests, the improved anchors perform the greater strength of 1.38 times than the existing anchors.

본 연구에서는 기존의 후설치 앵커의 헤드 부분과 확장슬리브 부분을 개선한 후설치 앵커를 개발하고자 한다. 최적형상을 시뮬레이션 해석을 수행하여 후설치 행커의 확장슬리브와 헤더의 길이를 결정하였다. FEM 해석 결과, 최적 슬리브 길이(9.0mm)와 헤더 길이(3.0mm)를 선정하였다. 개선 후 후설치 앵커의 인발강도 실험 결과, 모든 실험체에서 변동계수 15%를 만족하는 것으로 나타났다. 개선 전·후의 묻힘 깊이에 따른 인발강도를 비교한 결과, 묻힘 깊이가 50mm인 경우에는 1.25배 증가하였고, 묻힘깊이가 70mm인 경우에는 1.54배 증가하였다. 고강도 콘크리트의 경우에는 묻힘 깊이가 50mm인 경우에는 1.28배 증가하였고, 묻힘깊이가 70mm인 경우에는 1.55배 증가하는 것으로 나타났다. 또한, 전단강도 실험결과, 개선 후 앵커가 내력이 1.38배 증가하는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토교통기술촉진연구사업(과제번호: N20CTAP-C157477-01)에 의한 연구 결과이며 이에 감사드립니다.

References

  1. ACI Committee 355.2. (2011), Evaluating the Performance of Post-Installed Mechanical Anchors in Concrete.
  2. ACI Committee 318. (2011), Building Code Requirements For Structural Concrete and Commentary.
  3. ETAG, (2003), GUIDELINE FOR EUROPEAN TECHNICAL APPROVAL OF METAL ANCHORS FOR USEIN CONCRETE.
  4. Korean Building and Commentary, (2016), Architectural Institute of Korea.
  5. Hilti, (2019), Anchor Fastening Technical Guide Edition 19, https: //www.hilti.com/medias/sys_master/documents/hd8/h29/9484912361502/Technical-information-ASSET-DOC-LOC-1543421.
  6. HILTI, (2016), Hilti Technical Report.
  7. J. Lubliner, J. Oliver, S. Oller, E. Onate, (1989), A Plastic-damage Model for Concrete, International Journal of Solids and Structures, 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  8. Bang. J. S., Youn. I. R., Kwon. Y. S., and Yim. H. J. (2020), Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(4), 91-99. https://doi.org/10.11112/JKSMI.2020.24.4.91
  9. Delhomme, F., Pallud, B., and Rouane, N. (2018), Tightening Torque Influence on Pullout Behavior of Post-installed Expansion Anchors, KSCE Journal of Civil Engineering, 22(10), 3931-3939. https://doi.org/10.1007/s12205-018-0930-9
  10. Chen, Z., Nassiri, S., Lamanna, A., and Cofer, W. (2020), Investigation of Pull-Through and Pullout Failure Modes of Torque-Controlled Expansion Anchors. ACI Structural Journal, 117(1).
  11. Gontarz, J., and Podgorski, J. (2019), Analysis of Crack Propagation in a "Pull-out" Test, Studia Geotechnica et Mechanica.
  12. Tsavdaridis, K. D., Shaheen, M. A., Baniotopoulos, C., and Salem, E. (2016), Analytical Approach of Anchor Rod Stiffness and Steel Base Plate Calculation Under Tension. In Structures, 5, 207-218. https://doi.org/10.1016/j.istruc.2015.11.001
  13. Mahrenholtz, P., and Eligehausen, R. (2015), Post-installed Concrete Anchors in Nuclear Power Plants: Performance and Qualification, Nuclear Engineering and Design, 287, 48-56. https://doi.org/10.1016/j.nucengdes.2015.03.004
  14. Karmazinova, M., Melcher, J., and Kala, Z. (2009), Design of Expansion Anchors to Concrete Based on Results of Experimental Verification, Advanced Steel Construction, 5(4), 390-405.
  15. Kim, J. S., Jung, W. Y., Kwon, M. H., and Ju, B. S. (2013), Performance Evaluation of the Post-installed Anchor for Sign Structure in South Korea, Construction and Building Materials, 44, 496-506. https://doi.org/10.1016/j.conbuildmat.2013.03.015
  16. KCI, (2018), Anchor Design Method and Sample for Concrete.
  17. Hur. M. W., Chae. K. H., An. Y. S., and Park. T. W., (2019), An Performance Evaluation of Post-installed Anchor according to the Effective Embedment Length, Journal of the Korean Institute of Educational Facilities, 131(7), 19-25.