• Title/Summary/Keyword: 형변형

Search Result 2,163, Processing Time 0.027 seconds

Tangram Task Modification for Exploring in Elementary Mathematics (초등 수학에서 탐구를 위한 탱그램 과제 변형)

  • Yoo, Jae-Geun;Park, Moon Hwan
    • Education of Primary School Mathematics
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2019
  • This study searched for the possibility of tangram activities through modifying the tasks of elementary school mathematics textbooks into content based open tasks. As a result of analyzing previous researches, it was confirmed the educational effect of the mathematical tasks transformation and the educational value of tangram activities. The analysis of the textbooks revealed that the tangram activities presented in the textbooks are likely to be at the level of play. It was tried to modify 2015 revised curriculum textbook-tasks into content based open tasks. Based on this study, it could be expected advantages of task modification such as improvement of teachers' expertise and expectation of diverse reactions of students.

The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings (날개 대변형 예측의 정확성 향상을 위한 변형률 보정)

  • Lee, Hansol;Kim, In-Gul;Park, Sunghyun;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The information about the deformations of high-aspect-ratio wings is needed for the real-time monitoring of structural responses. Wing deformation in flight can be predicted by using relationship between the curvatures and the strains on the wing skin. It is also necessary to consider geometric nonlinearity when the large deformation of wing is occurred. The strain distribution on fixed-end is complex in the chordwise direction because of the geometric shape of fixed-wings on fuselages. Hence, the wing displacement can be diversely predicted by the location of the strain sensing lines in the chordwise direction. We conducted a study about prediction method of displacements regardless of the chordwise strain sensing locations. To correct spanwise strains, the ratio of spanwise strain to chordwise strain, Poisson's ratio, and the ratio of the plate strain to the beam strain were used. The predicted displacements using the strain correction were consistent with those calculated by the FEA and verified through the bending testing.

Numerical Analysis of Residual-Stress Relaxation in a Die Forging (형단조품의 잔류응력 제거처리공정 수치해석)

  • 박성한;이방업;조원만;은일상
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.16-16
    • /
    • 1998
  • 우주발사체용 로켓트 구조재로 사용되는 알루미늄합금 단조재는 강도확보를 위하여 고온으로 가열후 급냉과정에서 상당한 크기의 잔류응력이 발생되고 이로 인해 기계가공시 변형이 유발되어 조립성이 나빠진다. 잔류응력은 그 크기가 재료의 항복강도를 초과할 때 제거되므로 응력제거(stress relief)를 위해서는 외부하중이 가해져야 한다. 응력제거 처리는 소성변형, 열처리 및 초음파 등의 방법으로 수행되며 소성변형에 의한 제거효과가 가장 크다 형상이 복잡한 형 단조재의 경우 열간단조금형과 동일한 금형을 이용하는 TX52 등의 방법을 적용한다고 알려져 있으나 TX54에 대한 금형설계 및 소성변형률 적용 데이터는 공정 know-how로 분류되어 있다. 잔류응력제거 처리의 해석적 연구로는 판재와 링롤재에 대해서는 인장 및 압축 소성변형에 적용에 대한 결과가 발표된 바 있으나 형 단조재의 경우에는 전무하다

  • PDF

Numerical Formulation of Consolidation Based on Finite Strain Analysis (대변형 압밀방정식의 수식화)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.77-86
    • /
    • 2013
  • Embankments on soft ground experience significant deformation during time-dependent consolidation settlement, as well as an initial undrained settlement. Since infinitesimal strain theory assumes no configuration change and minute strain during deformation, finite strain analysis is required for better prediction of geotechnical problems involving large strain and geometric change induced by imposed loadings. Updated Lagrangian formulation is developed for time-dependent consolidation combining both force equilibrium and mass conservation of fluid, and mechanical constitutive equation is written in Janumann stress rate. Numerical convergence during Newton's iteration in large deformation analysis is improved by Nagtegaal's approach of considering the effect of rotation in mechanical constitutive relationship. Numerical simulations are conducted to discuss numerical reliability and applicability of developed numerical code: deformation of cantilever beam, two-dimensional consolidation. The numerical results show that developed formulation can efficiently describe large deformation problems. Proposed formulation is expected to facilitate the upgrading of a numerical code based on infinitesimal strain theory to that based on finite strain analysis.

Strain Rate Effect on the Compressive and Tensile Strength of Hooked Steel Fiber and Polyamide Fiber Reinforced Cement Composite (변형 속도에 따른 후크형 강섬유 및 폴리아미드섬유보강 시멘트 복합체의 압축 및 인장강도 특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.76-85
    • /
    • 2017
  • In this study, to evaluate the mechanical properties of fiber-reinforced cement composites by strain rate, hydraulic rapid loading test system was developed. And compressive and tensile strength of the hooked steel fiber and polyamide fiber reinforced cement composite were evaluated. As a result, the compressive strength, strain capacity and elastic modulus were increased with increasing strain rate. The effect of compressive strength by type and volume fraction of fibers was not significant. The dynamic increase factor(DIF) of the compressive strength was higher than that of the CEB-FIP model code 2010 and showed a trend similar to that of ACI-349. The tensile strength and strain capacity were increased with increasing strain rate. The hooked steel fibers were drawn from the matrix. The tensile strength and strain capacity of hooked steel fiber reinforced cement composites were increased as the strain rate increased. The tensile strength and deformation capacity of the fiber reinforced cement composites were increased. And, hooked steel fibers were drawn from the matrix. On the other hand, because the bonding properties of polyamide fiber and matrix is large, polyamide fiber was cut-off with out pullout from matrix. The strain rate effect on the tensile properties of polyamide fiber reinforced cement composites was found to be strongly affected by the tensile strength of the fibers.

Prediction for Large Deformation of Cantilever Beam Using Strains (변형률을 이용한 외팔보의 구조 대변형 예측)

  • Park, Sunghyun;Kim, In-Gul;Lee, Hansol;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.396-404
    • /
    • 2015
  • The UAV's wing has high aspect ratio that is suitable for the high altitude and long endurance. Knowing the real-time deformation of wing structure in flight, it can be utilized in structural health and loading status monitoring, improvement of control effectiveness and extraordinary vibration phenomena using displacement-strain relationship. In this paper, nonlinear displacement prediction algorithm was developed for prediction of large structural deflection in flight. The algorithm was validated through the comparison with finite element analysis results and also experimental results for several large tip displacements of cantilever beam. The predicted displacements using strains are agreed well with the measured values from laser displacement sensor.

Proposal of Stress-Strain Relations Considering Confined Effects for Various Composite Columns (합성형태에 따른 콘크리트 구속효과를 고려한 응력-변형률 관계식의 제안)

  • Park, Kuk Dong;Hwang, Won Sub;Yoon, Hee Taek;Sun, Woo Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.265-275
    • /
    • 2010
  • Concrete filled steel tube and concrete encased steel tube columns are expected to have confined effects of concrete by steel and reinforced effects of local buckling by concrete. On the basis of confined state concrete models of previous researches, stress-strain and load-displacement relations of RC, CFT and CET columns are analyzed by steel ratio. After comparing analysis results with experimental results, Modified stress-strain relations are derived through evaluation the influence upon confined effects of concrete in each cases. Also, the modified stress-strain models are carried out to be compared with specified strength of various countries.

Analysis of Anisotropic Laminated Cylindrical Shells with Shear Deformation (전단변형을 고려한 비등방성 원통형 쉘의 해석)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.373-384
    • /
    • 1999
  • The shell structures with composite materials have the advantages in strength, corrosion resistance, and weight reduction. The objective of this study is to analyze anisotropic composite circular cylindrical shells with shear deformation theory. In applying numerical methods to solve differential equations of anisotropic shells, this paper use finite difference method. The accuracy of the numerical method can be improved by taking higher order of interval ${\Delta}$ to reduce error. This study compares the results of finite difference method with the results of ANSYS based on finite element method. Several numerical examples show the advantages of the stiffness increasement when the composite materials aroused. Therefore, it is expected that results of this study give various guides for change of the subtended angles, load cases, boundary conditions, and side-to-thickness ratio.

  • PDF

An Experimental Study on Structural Characteristics of Reinforced Concrete Beams with the Perforative Opening (철근콘크리트 개방형 유공보의 구조적 특성에대한 실험적 연구)

  • 구해식
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.225-232
    • /
    • 1997
  • 철근콘크리트 유공보에 있어서 기존 유공보의 연구는 유공위치를 보춤의 중앙에 위치하여 연구하였으나 철근코크리트 보의 역학적 특성활용과 시공상의 편의성을 위해 사각형 유공의 위치를 보춤 하단에 설치하여 개방형 유공보로 변형하였다. 본 연구에서는 사각형 유공보에 대한 유공크기의 세로길이를 보춤의 0.3배로 하고 가로길이를 세로길의의 1~3배로 변화시켜 보강 및 무보강 상태의 사각형 유공보와 이의 사각형 유공하부 콘크리트를 제외시킨 개방형 유공보에 있어서 총 10개의 시험체를 대상으로 하는 실험을 실시하여 시험체의 최대내력, 유공주위에서의 전단균열과 시험체의 휨인장균열, 주요위치의 변위조사, 주근 및 유공주위의 콘크리트와 보강철근의 변형도조사, 시험체의균열을 조사하여 상호변화를 비교.분석하였다. 이 연구결과로부터 개방형유공보의 유공주위 응력변형상태, 파괴메카니즘, 적절한 개방형 유공크기,설계시 고려사항을 제시하여 차후의 개방형 유공보의 계속적인 연구에 기여하고자 한다.

Finite Element Method for Failure Analysis Considering Large Deformation and Strain Softening (대변형 탄소성유한요오법에 의한 재료의 연화현상을 고려한 파괴거동해석)

  • 김영민
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.29-38
    • /
    • 1997
  • Strain softening is observed for geomaterials such as rocks when they are sheared. The proper computational modelling for strain softening is very important because this behavior is closely related to failure in geotechnical problems. In this paper, we have investigated the proper FEM techniques for modelling strain softening in order to simulate failure behavior numerically. In showing numerical examples, the effects of element shape, mesh pattern and of imperfection and the difference between small and large deformation theories, of displacement control and pressure control after peak have been discussed.

  • PDF