• Title/Summary/Keyword: 협업방식

Search Result 311, Processing Time 0.035 seconds

Recommendation System using Personalized Services on Mobile Environment (모바일 환경에서 개인화 기법을 적용한 추천 서비스)

  • Kim, Ryong;Kang, Ji-Heon;Joo, Won-Kyun;Kim, Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.271-276
    • /
    • 2007
  • 모바일 기기는 기존의 음성통화와 다양한 네트워크 접속과 기능들이 결합되어 발전하고 있다. 또한 최근 등장한 다양한 휴대 인터넷 환경은 기존 모바일 기기의 네트워크 접근을 보다 쉽게 해주고 있다. 이러한 무선 환경을 사용하는 모바일 기기 사용자는 기존의 유선 환경보다 사용자 프로파일 정보를 쉽게 구할 수 있는 장점이 있으며, 모바일 기기는 혼자 사용하는 특징을 가지고 있다. 본 논문에서는 모바일 기기 사용자를 위한 개인화 방법으로 협업 필터링 방법을 통한 음악 추천과 푸쉬(Push), 풀(Pull)방식의 서비스 방법을 제안한다. 모바일 기기 사용자 프로파일 정보는 협업 필터링 방법을 통한 사용자 선호 음악 추천을 수행하고, 추천된 사용자 선호 음악은 푸쉬 서비스로 모바일 기기에 다운로드 된다. 추천을 통한 모바일 음악 푸쉬 서비스는 모바일 기기 사용자로 하여금 네트워크 환경에 접속되어있을 때 사용자 취향에 맞는 음악을 능동적으로 다운로드 해 둠으로써 사용자가 음악을 선택하여 모바일 기기로 다운로드 하는 불편함과 시간을 줄여 줄 수 있다.

  • PDF

Recommendation Mechanism with Combining Content-based Filtering and Collaborative Filtering on User Preference (유저 선호도 기반 내용기반 필터링 및 협력 필터링을 결합한 추천 기법)

  • Park, Byeong-Seok;Brohi, Aijaz Ali;Han, Seok-Hyeon;Kim, Hyun-Woo;Song, Eun-Ha;Yi, Gangman;Jeong, Young-Sik
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.693-694
    • /
    • 2016
  • 최근 스마트폰과 같이 개인화 서비스가 가능한 스마트 디바이스들이 급격히 보급되며 추천가 시스템에 대한 관심이 증가하고 있다. 그러나 활용 방안이 광범위함에도 불구하고 마케팅 등의 특정 분야에 한정되어 있거나 기술이 저수준에 머물러 있어 국내의 추천가 시스템은 아직 도입단계에 불과하다. 추천가 시스템은 어떠한 정보를 사용하는지에 따라 크게 내용 기반 필터링과 협업 필터링 두 가지로 분류한다. 본 연구에서는 메뉴 추천 분야에서 유저의 메뉴 선택이 주변 상황에 큰 영향을 받는다는 것에 착안해, 인근 유저와의 메뉴 선택 정보를 반영하는 협업 필터링과 사용자 개인의 취향에 최적화된 메뉴를 제공하는 내용 기반 필터링을 결합하는 방식으로 두 가지 필터링 기법을 결합한 메뉴 추천 시스템인 UBCRS(User-Based Collaborative Recommend System)를 제안한다.

Automatic TV Recommendation based on collaborative filtered Latent Topic (협업 필터링 Latent Topic기반 Automatic TV Recommendation)

  • Kim, EunHui;Pyo, Shinjee;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.62-65
    • /
    • 2011
  • 최근 화두가 되고 있는 스마트 폰 앱의 관심으로 스마트 TV의 앱에 대한 관심도 함께 증가하고 있다. TV시청 이용자들의 편의를 위해 증가하고 있는 수많은 채널과 콘텐츠 중, 개인 사용자의 이용 습관 및 대중의 선호 프로그램을 고려하여, 편리하게 원하는 TV프로그램에 접근하도록 해 주는 TV 앱이 있다면 이는 매우 중요한 기능으로 자리 잡을 가능성이 높을 것으로 예상된다. 이에 본 논문은 사용자의 시청 이용행태를 기반으로 주제모델링 기술의 고전적 모델인 LDA을 기반으로 협업필터링을 결합한 TV 선호 프로그램 추천 알고리듬을 제안한다. 개인의 관심 선호도는 일반적으로 특정 개수로 한정지어지는 특성을 고려하여, 개인 선호도 특성이 구별 되도록 두 가지 방법을 적용하였다. 하나는 개인 선호도 프로파일의 특정 상위 주제만을 고려하는 것이고, 또 다른 하나는 개인별 주제에 대한 선호도의 다양성이 드러나도록 비대칭 하이퍼-파라미터를 갖는 LDA를 사용 하였다. 실험 결과, 두 가지 방식에 대해 사용자의 실제 TV시청 이용내역 데이터를 기반으로 추천 성능의 향상을 평균 Precision 값을 측정하여 확인하였다. 또한, 본 논문에서는 주제 모델링을 통해 학습된 각 주제의 상위 확률의 TV 프로그램들을 분석한 결과, 하나의 주제가 개인별 시청의 특성 보다는 가족단위의 시청 특성을 드러냄을 확인할 수 있었다.

  • PDF

A Communication Framework for the Robotic Mediator collaborating with Smart Environments (스마트 환경과 협업하는 중재 로봇을 위한 통신 프레임워크)

  • Suh, Young-Ho;Lee, Kang-Woo;Cho, Eun-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.75-82
    • /
    • 2012
  • In order to enable network robots to effectively collaborate with smart environments, it is crucial that various types of heterogeneous device platforms can communicate each other in flexible and efficient manners. Most of existing software platforms for network robots adopted general-purpose middlewares such as CORBA, which are not suitable to the communication between robots and smart environments due to their heavy size and complexity. Moreover, they do not provide network robot-specific features. Therefore, we propose a new TCP-based Remote Method Invocation framework. We devide the middleware into two layers i. e. transport layers and rmi layers and provide key features to each layer so that network robots can effectively communicate with various devices in smart environments.

A Detection Rule Exchange Mechanism for the Collaborative Intrusion Detection in Defense-ESM (국방통합보안관제체계에서의 협업 침입탐지를 위한 탐지규칙 교환 기법)

  • Lee, Yun-Hwan;Lee, Soo-Jin
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.57-69
    • /
    • 2011
  • Many heterogeneous Intrusion Detection Systems(IDSs) based in misuse detection technique including the self-developed IDS are now operating in Defense-ESM(Enterprise Security Management System). IDS based on misuse detection may have different capability in the intrusion detection process according to the frequency and quality of its signature update. This makes the integration and collaboration with other IDSs more difficult. In this paper, with the purpose of creating the proper foundation for integration and collaboration between heterogeneous IDSs being operated in Defense-ESM, we propose an effective mechanism that can enable one IDS to propagate its new detection rules to other IDSs and receive updated rules from others. We also prove the performance of rule exchange and application possibility to defense environment through the implementation and experiment.

A Collaborative Technology of Intelligent Mobile Robots for Reliable Emergency Alert Broadcast (신뢰성 있는 재난경보 방송을 위한 지능형 이동 로봇의 협업 기법)

  • Chang, Sekchin;Lee, Yong-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.395-400
    • /
    • 2019
  • The CBS and the AEAS functionalities are defined in cellular systems and T-DMB systems, respectively. In the case that communication facilities are disabled in indoor environments, it is impossible for the residents to receive the emergency messages. In this paper, a novel collaborative technology of intelligent mobile robots is proposed, which relies on cooperative communications among the intelligent mobile robots. In order to improve the performance, the intelligent mobile robots exploit their location information. Simulation results confirm that the proposed method is very suitable for reliable emergency alert broadcast.

Designing Anonymous App for Office Workers with Collaboration Function (협업 기능이 추가된 직장인을 위한 익명앱의 설계)

  • Mun, Ji-won;Kim, Kang-san;Kim, Yeong-eun;Kang, Da-eun;Lee, Je-min;Hwang, Jeong-min;Lee, Jae-won;Kim, Dongju
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.40-43
    • /
    • 2022
  • Covid-19의 영향으로 직접적인 만남이 줄어들고 온라인 커뮤니티의 사용량이 급격하게 증가하였다. 에브리타임은 대부분의 대학생이 사용하고 있는 가장 보편적인 온라인 커뮤니티이다. 이러한 서비스와 비슷한 방식으로 운영되어 이질감을 느끼지 않으면서도, 직장인의 특성을 고려한 설계로 취업 후에도 지속적으로 사용할 수 있는 커뮤니티 서비스를 제안한다. 이에 본 논문에서는 협업기능을 강화한 직장인을 위한 온라인 커뮤니티이자 익명서비스로 프라이버시를 보호할 수 있는 모바일앱을 설계했다.

Design and Implementation of Contents-based Customized movie recommendation system using meta weight learning (메타 가중치 학습을 활용한 내용 기반의 맞춤형 영화 추천시스템 설계 및 구현)

  • An, Hyeon Woo;You, Hea Woon;Kim, Dea Yeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.587-590
    • /
    • 2020
  • 최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.

  • PDF

A Study on Filtering for Meaningful Information in the Massive Social Contents (대량의 소셜 컨텐츠에서 의미 있는 정보의 필터링 연구)

  • Ahn, Deuk-Hyeon
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.553-554
    • /
    • 2010
  • 무수히 많은 정보가 쏟아져 나오는 시대에 살고 있는 웹 사용자에게 유용한 정보를 제공하기 위한 여과기법의 연구는 큰 중요성을 갖는다. 이런 기법엔 크게 내용 기반 여과방식과 협업적 여과방식 두 가지로 나눌 수 있다. 이들 각각은 서로 장, 단점을 가지고 있으며 따라서 이를 병합한 기법의 연구는 필수적이다. DB 의 WAL 기법과 진화알고리즘을 이용하여 좀 더 사용자에게 최적화된 추천을 가능하게 할 수 있다. 또한 폭소노미에 기반한 태깅기법 및 패턴인식, 온톨로지(ontology) 기법의 연구를 통해 기존의 한계를 보완하여 향후 더욱 개선된 여과 기법을 기대할 수 있다.

A mobile system development which has function of movie success prediction and recommendation based on deep learning (딥러닝 기반 영화 흥행 예측 및 영화 추천 모바일 시스템 개발)

  • Kim, Kyeong-Seok;Jang, Jae-Jun;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.443-448
    • /
    • 2019
  • 본 논문은 공공 데이터 Open API와 TMDB(The Movie Database) API를 이용하여 사용자의 선호 영화를 Google에서 제공해주는 Tensoflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 영화를 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 사용자가 쉽게 영화를 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 최적의 영화 Contents를 추천함과 아울러 기존 영화의 특성을 학습하여 흥행할 신규 영화를 예측하는 기능 또한 제공한다. 본 애플리케이션에 사용된 신규 영화 흥행 예측 모델은 약 85%의 정확도를 보이며 사용자 맞춤추천의 경우 기존 장르 추천이나 협업 필터링 추천보다 딥러닝을 통한 장르, 감독, 배우 등의 보다 세밀한 학습 추천이 가능하다.

  • PDF