신경망을 이용한 추천 기술은 항목이나 사용자간의 가중치를 학습할 수 있고, 자료 유형에 상관없이 데이터 처리가 용이하다. 또한 최근 연구를 통해서 그 우수성이 입증되고 있다. 그러나 사용자간의 상관관계로 추천하는 사용자 신경망 모델과 항목간의 상관관계로 추천하는 항목 신경망 모델이 서로 다른 관점으로 다른 선호도를 제시한 경우에 선택한 모델의 선호도에 따라 시스템의 성능이 좌우된다. 그러므로 효율적이고 성능이 우수한 추천 시스템을 위해 사용자와 항목 신경망 모델의 통합 방법을 제안한다. 두 모델 사이에 우선 순위를 결정하여 통합하는 순차적 통합 방법과 두 모델을 동시에 고려하는 병렬적 통합방법을 제안한다. 그러나 두 통합 방법은 선호도 예측 기준에 있어서 정적이고, 문제에 대한 적응성이 없다. 그러므로 신경망(퍼셉트론, 다층 퍼셉트론)을 이용한 통합 방법을 제안한다. 또한 퍼지의 소속함수를 이용하여 퍼지 추론를 적용한 통합 방법을 제안하고, 패턴 인식 분야에서 사용하는 BKS 방법을 적응하여 두 신경망 모델을 통합하여 실험한다. 본 논문에서는 사용자와 항목 신경망 모델을 통합함으로써 기존의 추천 기술인 연관 규칙과 단일 신경망 모델을 이용한 추천보다 우수함을 보이고 있다.
최근 그 중요성이 인식되면서 수학에서 뿐만 아니라, 생물학, 의학, 면역학 등의 여러 분야에서 세계적으로 광범위하게 연구되어지고 있는 수리 생물학(Mathematical biology) 분야의 학문적 시초이며 그 기초를 제공하는 개체 수 생태학 (population ecology) 은 생물 종 (種) 의 개체 수가 서식지 안의 특정 위치에서 시간에 따라 어떻게 변하는 지를 연구하는 분야이다. 이 논문에서는 두 종류의 생물 종이 한 서식지 안에서 상호작용하는 형태로서 포식자-먹이 관계, 경쟁관계, 협력관계를 나타내는 모델들을 살펴본다.
국내 건설 엔지니어링 기업은 해외 실적 향상을 위한 방안으로 세계은행의 공적개발원조 사업을 통한 해외시장 확장의 발판을 마련하고자 한다. 하지만 세계은행 사업은 한정된 사업을 두고 다수의 글로벌 기업과 경쟁하기 때문에 입찰경쟁에서 우위를 선점하고, 수원국의 제도적 조건을 충족하기 위해 적합한 사업파트너와의 협력관계 구축이 필수적이다. 이러한 협력관계를 통한 입찰 전략 구축의 일환으로 사회 네트워크 분석을 이용한 다수의 과거 네트워크 분석 연구가 진행된 바 있으나, 네트워크의 변화과정을 기반으로 분석한 연구는 드물다. 이에 본 연구는 세계은행 ODA 사업이 원활히 시행된 후 종료된 아시아 3개국의 낙찰 데이터를 수집하고, 네트워크의 동적 변화를 반영한 학습기반 링크예측 모델을 구축하였다. 그 결과 낙찰기업들 간 협력관계 구축에 작용하는 11가지 주요 요인을 도출하고, 각 변수가 개별 링크의 협력 여부 확률 값에 미치는 영향을 확인하였다.
사회적 소프트웨어인 블로그(Blog) 사용이 급증함에 따라 기업 내에서 블로그를 활용하는 기업들이 늘어나고 있다. 기업에서 블로그가 외부적으로는 고객 관계, 광고, 판매 촉진 또는 파트너와의 커뮤니케이션이나 협력의 도구로 사용되고, 내부적으로는 협업, 지식 관리, 공동체 개발 등의 도구로 사용되고 있다. 본 연구는 기업들이 내부적으로 블로그를 사용함에 있어 기술적 수용에 미치는 영향에 관하여 조사하였다. 연구 모형은 기술수용모델(Technology Acceptance Model; TAM)을 근간으로 모델을 설정 하였다. 데이터 수집은 설문지 방식으로 기업 블로그를 도입한 국내 주요 기업을 대상으로 실시하였다.
본 연구는 레거시 시스템의 인터페이스 정보로부터 의미 있는 정보를 파악하여 새로운 시스템에 통합될 수 있도록 하기 위한 기존 레거시 시스템의 인터페이스에 기반한 객체추출 기법을 제안한다. 본 논문에서 제안하는 객체추출 기법은 인터레이스 사용사례 분석 단계, 인터페이스 객체 분할 단계, 객체구조 모델링 단계, 객체 모델 통합 단계 등 4단계로 구성되어 있다. 인터페이스 사용사례 분석 단계는 인터페이스 구조, 레거시 시스템과 사용자간의 상호작용 정보를 획득하는 단계이다. 인터페이스 객체분할 단계는 인터페이스 정보를 의미 있는 필드들로 구분하는 단계이며, 객체구조 모델링 단계는 인터페이스 객체들간의 구조적 관계와 협력 관계를 파악하여 모델링 하는 단계이다. 마지막으로 객체 모델 통합 단계는 객체 단위의 단위 모델들을 통합하여 추상화된 정보를 포함한 상위 수준의 통합 모델을 유도하는 단계다. 객체추출 기법에 의해 생성된 객체 통합 모델은 역공학 기술자들의 레거시 시스템 이해와 레거시 시스템의 정보를 새로운 시스템에 적용하는데 있어 효율성을 극대화할 수 있다.
협력적 여과는 특별한 아이템에 대한 사용자의 선호도를 예측하는 데 사용하는 기술이다. 이러한 협력적 여과 기술은 사용자 기반 접근 방식과 아이템 기반 접근 방식으로 구분할 수 있으며, 많은 상업적인 추천 시스템에서 광범위하게 사용되고 있다. 본 논문에서는 저차원 선형 모델을 사용하여 사용자 기반과 아이템 기반을 통합하는 하이브리드 협력적 여과 방법을 제안한다. 제안한 방법에서는 저차원 선형모델 중 비음수 행렬 분해(NMF)를 이용하여 기존의 협력적 여과 시스템의 문제점인 희박상과 대용량성의 문제점을 해결한다. 협력적 여과 시스템에서 NMF를 이용하는 방법은 사용자를 의미 관계로 표현할 때 유용하게 사용되나 사용자-아이템 행렬의 평가값에 따라 정확도가 낮아질 수 있으며, 모델 기반의 방법이기 때문아 계산 과정이 복잡하여 동적인 추천이 불가능하다는 단점을 갖는다. 이러한 단점을 보완하기 위하여 제안된 방법에서는 NMF에 의해 군집된 그룹을 대상으로 TF-lDF를 이용하여 그룹의 특징을 추출한다. 또한, 아이템 기반에서 아이템간의 유사도를 계산하기 위하여 상호정보량(mutual information)을 이용한다. 오프라인 상에서 훈련집합의 사용자를 군집시키고 그룹의 특징을 추출한 후, 온라인 상에서 추출한 그룹의 특징을 이용하여 새로운 사용자를 가장 최적의 그룹으로 분류함으로써 사용자를 분류하는 데 걸리는 시간을 단축시켜 동적인 추천을 가능하게 하며, 사용자 기반과 아이템 기반을 병합함으로써 기존의 방법보다 정확도를 높인다.
QR(Quick Response)란, 생산/유통 관계의 거래 당사자가 협력하여 소비자에 대하여 적절한 상품을. 적절한 장소에, 적시에, 적량을, 적당한 가격으로 제공하는 것을 목표로 정보기술을 활용하여 생산, 물류기술의 단축, 재고의 삭감, 반품 LOSS의 삭감 등 생산ㆍ유통 각 단계에서의 합리화를 실현하고, 그 성과를 생산자, 유통관계자, 소비자 사이에서 분배 할 수 있도록 하는 개념으로 어패럴 등의 의류상품을 중심으로 적용(중략)
상생경영이란 대기업과 중소기업간의 협력을 통해 서로에게 부족한 경쟁력을 강화시키고 모두가 이득(win-win)을 보는 전략이다. 종래의 갑을관계가 아닌 대기업은 중소기업의 기술력에 대한 도움을 받아 새로운 성장모델을 찾을 수 있고 중소기업은 판매와 기술지원에서 대기업의 파트너로 도움을 받을 수 있다. 가속화되는 글로벌 경쟁 속에서 국내 기업들에게 새로운 비지니스 패러다임을 제시하는 상생경영 전략과 성공사례를 살펴보자.
협력적 추천은 데이터의 범위성, 초기 사용자, 희소성, 회색양의 문제를 안고 있다. 이를 해결하기 위해 기존 연구는 내용기반 추천이나 인구통계학적 추천을 협력적 추천과 통합하려는 연구가 진행되어 왔다. 본 논문에서는 추천 시스템의 성능 향상을 위해 이질적인 데이터의 통합에 효과적인 신경망을 사용하여 다양한 종류의 정보 융합을 제안한다 신경망을 사용한 추천 모델은 사용자들 또는 항목들 간의 선호관계를 학습할 수 있고, 이질적인 데이터의 통합이 용이한 신경망의 장점을 이용하면 항목들에 대한 내용과 사용자들의 인구통계학적인 정보, 그리고 그 외적인 관련정보를 쉽게 융합할 수 있다. 또한, 데이터 융합을 통하여 희소 데이터 문제와 초기 사용자 문제를 해결할 수 있다.
인터넷을 통한 사용자의 선호도를 분석하고 협력적 여과 및 내용기반 여과 기술을 결합 이용하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. 유머문서 추천 기술은 다양한 아이템에 대한 여과 및 추천 기술로 확장되어 인터넷을 통한 과다 정보 시대에 필요한 소프트봇 혹은 지능형 에이전트 기술에 적용될 수 있다. MrHumor 추천시스템은 적응형 학습 시스템으로서 새로운 사용자의 선호도에 대한 학습량과 추천시기에 따라 이용할 추천방식이 다른 성능을 보이는데 여러 가지 상황에서도 적절한 동작을 보이기 위하여 MrHumor에서는 은닉변수 모델을 이용하여 사용자의 인구통계적 정보와 문서의 내용적 특징간의 관계를 학습하여 초기 추천을 행하고 SVM을 이용하여 개인의 선호도를 학습한 내용 기반의 여과와 적응형 k-NN모델을 이용한 협력적 여과를 결합하여 추천을 수행한다. 제안된 방식에 의한 추천 성능은 3방식이 각각 이용된 경우에 비해 안정적이고 높은 예측 정확도를 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.