1 |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, Heidelberg, 2000.
|
2 |
H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
|
3 |
C. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly , Can. Entomol., 91, (1959), pp. 293-320.
DOI
|
4 |
C. Holling,"The characteristics of simple type of predation and parasitism", Canadian Entomologist 91, (1959), pp. 385-398.
DOI
|
5 |
C. Holling,"The functional response of predators to prey density and its role in mimicry and population regulation ", Mem. Entomol. Soc. Can., 45, (1965), pp. 3-60.
|
6 |
W.O. Kermack and A.G. McKendrick,"A Contribution to the Mathematical Theory of Epidemics", Proc. Roy. Soc. A, 115, (1927) pp. 700-721.
DOI
|
7 |
M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, UK, 2001.
|
8 |
A.J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
|
9 |
J.D. Murray, Mathematical biology, Springer-Verlag, Heidelberg (1989).
|
10 |
M. Rosenzweig,"Paradox of enrichment: destabilization of exploitation ecosystems in ecological time", Science, 171, (1971), pp. 385-387.
DOI
|
11 |
S.A. Shim, Hopf Bifurcation Properties of Holling Type Predator-Prey Systems, Honam Mathematical Journal 30, (2008), no. 3, pp. 293-320.
|
12 |
V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, 1926. Translated by R.N. Chapman, Animal Ecology, pp. 409-448, McGraw-Hill, New York, 1931.
|
13 |
W.O. Kermack and A.G. McKendrick,"A Contribution to the Mathematical Theory of Epidemics", Proc. Roy. Soc. A, 138, (1932), pp. 55-83.
DOI
|
14 |
W.O. Kermack and A.G. McKendrick,"A Contribution to the Mathematical Theory of Epidemics", Proc. Roy. Soc. A, 41, (1933), pp. 94-122.
|