추천 시스템은 정보의 홍수 속에서 사용자로 하여금 자신에게 더욱 가치 있고 흥미로운 정보를 선별할 수 있도록 돕는 자동화된 정보 여과 시스템이다. 최근 분산 컴퓨팅 환경에 대한 연구가 활발히 진행되면서, 지금까지의 중앙 서버에서 모든 정보를 관리하는 중앙 집중 방식의 추천 시스템에서 P2P 환경의 접근 방식으로 선회하고 있다. 협력적 여과는 상업적인 추천 시스템에서 가장 많이 사용하는 정보 여과 기법이지만, 그 성공에도 불구하고 확장성(scalability)과 데이터의 희박성(sparsity), 악의적인 사용자의 공격(shilling attack)에 대한 방어 등에 관련된 여러 제약을 갖는다. 중앙 집중 방식에서 분산된 방식으로의 변화는 추천의 신뢰성과 개인 정보의 남용 가능성에 관련한 문제점을 일부 해결할 수 있으나, 조작된 사용자 프로파일을 사용하여 추천을 조작하려는 의도를 갖는 악의적인 사용자의 공격에는 중앙 집중 방식과 마찬가지로 취약할 수 있다. 본 논문에서는 개인 정보의 오남용과 악의적인 사용자의 공격에 관련된 문제점을 해결하고, 분산된 환경에서 효과적인 협력적 여과를 수행하여 추천의 성능과 정확성을 높이기 위한 멀티 에이전트 기반의 추천 프레임워크를 제안한다. 추천의 신뢰성을 높이기 위해 사용자간의 신뢰 정보를 사용하며, 각 사용자의 개인 에이전트와 이동 에이전트간의 정보교환을 통해 효과적으로 신뢰 정보를 전파하고 분산된 유사도 계산의 효율성을 높였다.
사회의 복잡화와 인터넷의 성장으로 폭발적으로 늘어나고 있는 정보들을 사용자가 모두 검토한 후 여과하기는 어려운 일이다. 이러한 문제를 보완하기 위해서 자동화된 정보 여과 기술이 사용되는데, k-최근접 이웃(k-nearest neighbor) 알고리즘은 그 구현이 간단하며 비교적 정확하여 가장 널리 쓰이고 있는 알고리즘 중 하나이다. k 개의 최근접 이웃들로부터 평가값을 계산하는 데 흔히 쓰이는 방법은 상관계수를 이용한 가중치에 기반하는 것이다. 본 논문에서는 이를 보완하여 대규모 데이터에 대해서도 속도는 크게 저하되지 않으며 정확도는 대폭 향상시킬 수 있는 방법을 적용하였다. 또한, 최근접 이웃을 구하는 거리함수로 다양한 방법을 시도하였다. 영화추천을 위한 실제 데이터에 대한 실험 결과, 속도의 저하는 미미하였으나 정확도에 있어서는 크게 향상된 결과를 가져올 수 있었다.
협력적 여과 시스템의 사용자-아이템 행렬은 사용자들이 아이템에 대하여 평가할 경우 사용자들의 감정 상태가 일정하지 않음으로 인하여 평가 결과에 잡음을 포함할 가능성이 높다. 이러한 문제점을 해결하기 위해 본 논문에서는 산포도를 이용하여 추천 정보로서 이용하기에 부적당한 평가값들을 제외시킴으로써 사용자-아이템 행렬을 최적화시키고, 아이템 정보와 사용자 정보를 반영하여 고유의 사용자의 평가값을 기반으로 선호도를 예측하였을 때 발생하는 잡음을 감소시킨다. 산포도의 변이계수가 갖는 단점을 보완하기 위하여 백분위수를 이용하여 극한적인 평가값을 제거하고, 사용자의 변이계수와 아이템의 중위수를 병합하여 가중치가 부여된 사용자-아이템 행렬을 구성한다. 마지막으로 이를 기반으로 새로운 사용자의 선호도를 예측한다. 제안된 방법은 영화에 대해 평가한 MovieLens 시스템의 데이터베이스를 이용하여 평가되었으며, 기존의 방법보다 성능이 높음을 보인다.
인터넷 특성상 방대한 양의 정보와 상품 등으로 사용자들이 원하는 정보를 찾기 위해서 많은 시간을 낭비하고 있는 실정이다. 이러한 사용자의 시간 소모를 중이기 위해서 추천 시스템이 개발되었다. 현재 인터넷 상의 추천 기술 중에서 가장 많이 사용하는 기법으로는 협력적 여과(Collaborative filtering) 방법이다. 그러나, 협력적 추천 방법으로 추천 받기 위해서는 특정수 이상의 아이템에 대한 평가가 필요하며, 또한 비슷한 성향을 가지는 일부 사용자 정보에 근거하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 이러한 문제점이 발생되므로 최근에는 데이터 마이닝(Data Mining) 기법 중 연관 규칙(Association Rule)을 이용한 추천 시스템이 개발되고 있다[1,10]. 그러나, 연관 규칙 기법은 개인별 사용자의 성향을 반영하지 못하는 단점이 있다[4]. 연관 규칙은 단지 대용량 데이터 베이스에서 아이템간의 지지도(Support)와 신뢰도(Confidence)에 근거하여 규칙을 발견하는 특징을 가지고 있기 때문이다. 즉 개인성향을 무시하고 아이템간의 연관성만을 근거로 하여 아이템을 추천하기 때문이다. 본 논문에서는 효율적인 연관 규칙을 이용한 개인화 추천 시스템을 구현하기 위해서 연관 규칙과 여과 방법을 통합한 시스템을 제안한다. 본 시스템에 대하여 성능 비교 실험을 수행함으로써 제안한 방법의 타당성을 제시한다.
전자상점에서 이루어지는 고객의 구매패턴이 온라인 상에서 데이터베이스화되어, 이를 통하여 고객의 취향에 맞는 상품을 제공할 수 있는 많은 알고리즘이 연구되고 있다. 이러한 알고리즘은 전자상점에서 고객의 개별특성을 고려한 상품을 제공하기 위하여, 고객정보 데이터베이스와 거래정보 데이터베이스로부터 연관규칙 등을 추출하여 사용한다. 그러나 시간의 흐름에 민감한 계절상품이나 특선상품과 같이 전자상점의 거래량에 크게 직결될 수 있는 상품에도 기존의 시간을 고려하지 않은 알고리즘을 적용한다면 추천성공률이 떨어질 것이다. 따라서 본 논문에서는 시간의 영향을 많이 받는 상품추천을 위하여, 최근 전자상점 추천시스템으로 효과적인 아이템 기반 협력알고리즘에 지수적 가중치를 적용한 협력적 여과추천(EWCFR) 알고리즘을 제안한다. 또한 이러한 추천시스템이 대용량의 고객데이터와 상품데이터에 대한 연산을 수행하고 다수의 고객에게 실시간으로 서비스를 제공하여야 하므로, XML기반의 MMDB를 활용한 전자상거래 시스템과 알고리즘을 제안한다.
SCORM의 Content Repository는 Asset이나 컨텐츠의 Metadata를 가지고 컨텐츠나 Asset을 검색할 수 있도록 한다. 이런 Metadata 기반 검색은 아주 많은 컨텐츠를 대상으로 검색을 할 경우, 검색을 통한 컨텐츠 결과가 너무 많을 경우 결과 내에서 재검색을 하는데 많은 시간을 들일 수 있다는 단점이 있다. 본 논문에서는 검색 효율을 높이기 위한 방법으로 SCORM 기반 LMS에 협력 필터링 방법을 적용한 시스템을 제안하였다.
성공적인 사이트를 위한 필수적인 요소로 각광받고 있는 collaborative filtering 기술은 정보의 과부하를 줄일 수 있고 고객에 대한 충성도를 높여주는 효과로 인해 많은 사이트에 적용되어 운용되고 있다. 이 논문에서는 collaborative filtering 적용 포기에 발생하는 정보의 부족으로 인한 정확도 저하를 막기 위해 상품간 연관성을 이용한 결측티 예측 방안을 제안한다.
우리는 인터넷을 통한 사용자의 선호도(preference)를 분석하고 협력적 여과 기술을 학습하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. MrHumor에서는 사용자집합이 유머문서 집합에 대하여 보여준 등급매김값을 토대로 사용집합의 백터공간(vector space)를 설정하고 노이즈에 강하면서 효율적인 학습을 위해 선형 PCA를 이용하여 축소된 2차원 공간상에서 유머문서의 통계적 특성을 반영하여 적응형 k-NN으로 지엽성을 적적히 조절하여 새로운 문서에 대한 선호도를 추정하게 된다.
웹 로그 기반의 웹 사용 마이닝은 명시적 평가 의존, 확장성 결여, 그리고 다차원 및 희박한 데이터에 성능이 떨어지는 협력적 여과의 문제를 다소 해결할 수 있다. 그러나 k-Means 군집화 방법으로 생성된 군집속 유사 사용자 이동 패턴으로는 클러스터속 사용자 전체의 선호도를 표현할 수 없으므로 사용자 이동 패턴인 트랜잭션들로부터 사용 프로파일을 유도해야 한다. 본 논문에서는 유사 군집 사용자들의 관심과 기호를 표현할 수 있도록 클러스터 내부 데이타로부터 평균 가중치 및 빈발 지지도 임계값을 사용하여 개선된 사용 프로파일을 생성하고 실험 데이터를 통한 예측력과 추천에 대한 성능을 평가한다.
협력적 여과(collaborative filtering) 방법을 사용하는 추천 시스템에서 예측 정확도를 높이는 방법들 중 하나는 군집화(clustering)방법이 있다. 군집화 방법은 선호도가 유사한 사용자들을 미리 같은 군집으로 만들고, 군집 내에 속한 사용자들을 이웃으로 선정하여 예측을 수행하기 때문에 군집화의 결과가 예측의 정확도에 직접적인 영향을 주게 된다. 본 연구에서는 군집화 결과의 향상을 위해 데이터를 전 처리하는 두 가지 방법과 군집화의 특성을 이용한 새로운 예측식을 제안하고, 기존 연구 방법과의 비교 실험을 통해 실험결과를 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.