• 제목/요약/키워드: 협력적필터링

검색결과 133건 처리시간 0.027초

필터링기법을 이용한 영화 추천시스템 알고리즘 개발에 관한 연구 (A study of development for movie recommendation system algorithm using filtering)

  • 김선옥;이수용;이석준;이희춘;지선수
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.803-813
    • /
    • 2013
  • 전자상거래에서 상품의 구입은 오프라인에서 구매하는 방식과는 차이가 있다. 오프라인에서 상품추천은 판매원의 추천에 의해 이루어지지만 온라인에서 상품 추천은 판매원이 상품 추천을 할 수가 없기 때문에 오프라인과는 다른 형태의 상품을 추천하게 된다. 추천시스템은 온라인 상거래에서 상품을 추천하는 방법으로 기존 상품을 구입한 고객의 선호도를 기반으로 상품을 구입하려는 고객의 선호도를 예측하여 추정된 선호도가 높은 상품을 고객에게 추천하는 방법이다. 협력적 필터링 알고리즘은 전자상거래의 상품추천 추천시스템에 사용되며 추정된 값들로 추천 상품 목록을 만들고 그 목록을 고객에게 추천을 하는 것이다. 이 논문에서 사용된 데이터집합은 Movielens 데이터집합인 100k 데이터집합과 1 million 데이터집합이며 일반화를 위해 2개의 데이터집합에서 유사한 결과를 도출하여 일반화시키고자 한다. 영화 추천시스템의 새로운 알고리즘을 제안하기 위해 기존의 알고리즘과 변형된 알고리즘에 의해 추정된 추정값들의 분포 특징을 분석과 응답자별로 분류해서 응답자별 분포의 특징을 분석하였다. 이 논문에서는 이웃기반 추천시스템 협력적 필터링 알고리즘을 개선하기 위해 기존의 알고리즘과 변형된 알고리즘을 바탕으로 새로운 알고리즘을 제안하였다.

사용자 선호도와 태그 간 상관도 분석을 통한 태그 기반 협력적 필터링 기법 (Tag-Based Collaborative Filtering Approach Using Analysis of the Correlation Between User's Preference and Tags)

  • 이경종;공기현;이상구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.72-77
    • /
    • 2007
  • 웹의 성장에 따른 기하급수적인 정보의 축적으로 인한 정보과다(Information Overload) 현상의 심화를 해결하기 위해 이루어져 온 많은 연구 중 하나인 추천 시스템은 사용자에게 고수준의 편의성을 제공하기 위한 시스템으로써 발전해 왔다. 그러나 과거에 고도로 집중화되어 관리, 구축되어 오던 정보와는 달리 Web2.0라는 새로운 웹 환경의 도래와 함께 태그, 블로그 등 새로운 형태와 특성을 가지는 점보들이 등장하게 되었다. 웹의 컨텐츠에 대한 메타정보를 사용자가 직접 입력한 Web2.0 기반의 태그 데이터론 활용해서 추천 시스템의 성능을 향상시킬 수 있는 기법을 연구하였다. 추천 기법 중 가장 대표적이고 기초적인 협업 필터링 기법에 태그를 활용하며 태그에 사용자에 대한 중요도를 감안한 가중치 부여 기법에 연구한다. 유사한 성향을 가진 사용자를 식별하는데 있어 태그 집합간의 유사도를 비교하는 방법을 사용하며 사용자의 성향을 반영하기 위해서 태그와 사용자의 선호도 정수와의 연관성을 분석해서 이를 태그의 가중치로 환산하는 기법을 제안한다.

  • PDF

유전자 알고리즘을 이용한 감성공학적 의상 코디 지원 방법 (Human Sensibility Ergonomic Apparel Coordination Supporting Method using Genetic Algorithm)

  • 정경용
    • 한국콘텐츠학회논문지
    • /
    • 제8권5호
    • /
    • pp.38-43
    • /
    • 2008
  • 감성공학이 생활의 일부가 되어가면서 정보의 양도 급속도로 늘어나고 있으며, 이로 인해 데이터 속에서 정보를 찾아내는 기술이 부각되고 있다. 협력적 필터링은 비슷한 선호도를 가진 일부 사용자의 정보를 바탕으로 하기 때문에 나머지 정보를 무시하는 경향이 있다. 본 논문에서는 유전자 알고리즘을 이용한 감성공학적 의상 코디 지원 방법을 제안한다. 제안된 방법에서는 유전자 알고리즘에 의한 적합 함수로 평가 값을 계산하고 a-cut을 이용하여 군집한다. 성능평가를 위해 설문조사 데이터 집합에서 기존의 방법과 비교 평가하였다. 실험 결과 제안한 방법이 기존의 다른 방법들보다 정확도면에서 우수함을 확인하였다.

추천 시스템을 위한 단계적 평가치 예측 방안 (A Stepwise Rating Prediction Method for Recommender Systems)

  • 이수정
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.183-188
    • /
    • 2021
  • 협력 필터링 기반의 추천 시스템은 현재 다양한 분야의 상업용 시스템의 필수불가결한 기능으로서, 사용자들이 선호할만한 상품을 맞춤형으로 제공해 주는 유용한 서비스이다. 그러나, 사용자들의 평가 데이타가 불충분할 경우 선호상품의 예측이 부정확할 우려가 크다. 본 연구에서는 이러한 단점을 해결하기 위하여 단계적으로 상품의 평가치를 예측하는 방안을 제시한다. 각 단계에 해당하는 예측 방법의 적용 조건을 만족하지 못할 경우 다음 단계의 방법을 적용한다. 제안 방법의 성능 평가를 위해, 공개 데이터셋을 활용한 실험을 진행하였으며, 제안 방법은 여러 전통적 유사도 척도를 도입한 협력 필터링 시스템의 예측 성능과 정밀도 성능을 크게 향상시켰고, 평가데이터 희소성 해결을 위한 기존 방식들의 성능을 능가하는 결과를 보였다.

토픽 모델을 이용한 모바일 앱 설명 노이즈 제거 (Noise Elimination in Mobile App Descriptions Based on Topic Model)

  • 윤희근;김솔;박성배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.64-69
    • /
    • 2013
  • 스마트폰의 대중화로 인하여 앱 마켓 시장이 급속도로 성장하였다. 이로 인하여 하루에도 수십개의 새로운 앱들이 출시되고 있다. 이러한 앱 마켓 시장의 급격한 성장으로 인해 사용자들은 자신이 흥미를 가질만한 앱들을 선택하는데 큰 어려움을 겪고 있어 앱 추천 방법에 대한 연구에 많은 관심이 집중되고 있다. 기존 연구에서 협력 필터링 기반의 추천 방법들을 제안하였으나 이는 콜드 스타트 문제를 지니고 있다. 이와는 달리 컨텐츠 기반 필터링 방식은 콜드 스타트 문제를 효율적으로 해소할 수 있는 방법이지만 앱설명에는 광고, 공지사항등 실질적으로 앱의 특징과는 무관한 노이즈들이 다수 존재하고 이들은 앱 사이의 유사관계를 파악하는데 방해가 된다. 본 논문에서는 이런 문제를 해결하기 위하여 앱 설명에서 노이즈에 해당하는 설명들을 자동으로 제거할 수 있는 모델을 제안한다. 제안하는 모델은 모바일 앱 설명을 구성하고 있는 각 문단을 LDA로 학습된 토픽들의 비율로 나타내고 이들을 분류문제에서 우수한 성능을 보이는 SVM을 이용하여 분류한다. 실험 결과에 따르면 본 논문에서 제안한 방법은 기존에 문서 분류에 많이 사용되는 Bag-of-Word 표현법에 기반한 문서 표현 방식보다 더 나은 분류 성능을 보였다.

  • PDF

연관관계 군집 분할 방법을 이용한 아이템 필터링 시스템 (Item Filtering System Using Associative Relation Clustering Split Method)

  • 조동주;박양재;정경용
    • 한국콘텐츠학회논문지
    • /
    • 제7권6호
    • /
    • pp.1-8
    • /
    • 2007
  • 전자상거래에서 많은 아이템 중에 사용자에게 적합한 아이템을 추천하기 위해서는 많은 시간과 노력이 소요된다. 그러므로 추천 시스템이 사용자들을 대신하여 적합한 아이템을 추천해줄 수 있다면 만족을 얻을 수 있다. 본 논문에서는 정확성과 확장성을 향상시키기 위해서 협력적 필터링에서 연관관계 군집 분할 방법을 제안하였다. 평가한 데이터를 사용하여 연관 아이템간의 향상도를 산출하고 연관관계 군집의 효율성을 높이기 위해서 아이템으로 구성된 노드 군집을 분할하였다. 이는 군집들 중 하나의 아이템만이 연관성을 달리하고, 나머지 아이템들은 군집의 연관성이 충족되어진다면 결합하는 방법이다. 성능을 평가하기 위해서 MovieLens 데이터 집합에서 K-means와 EM에 의한 군집과 비교 평가하였다.

무선망에서의 임베디드 베시지 서비스를 위한 협력적 프로파일 갱신 (Cooperative profile updates for embedded message service in wireless network)

  • 이종득;안정용
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권5호
    • /
    • pp.775-782
    • /
    • 2005
  • 무선망 서비스는 낮은 대역폭, 빈번한 끊김 현상, 패킷 전송률, 사용자의 이동성 등에 따른 많은 문제점이 발생되고 있다. 본 논문에서는 무선 망 서비스를 효율적으로 수행하기 위해 협력적 갱신 기법을 제안한다. 제안된 기법은 협력적 필터링을 이용하여 갱신을 수행하게 되며, $mbuffer_{in}$$mbuffer_{out}$에 의해 스트리밍이 수행된다. 시뮬레이션 결과 제안된 기법의 성능이 효율적임을 보인다.

  • PDF

연관 규칙과 협력적 여과 방식을 이용한 추천 시스템 (Recommender System using Association Rule and Collaborative Filtering)

  • 이기현;고병진;조근식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.265-272
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목 그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다. 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다. 구축, 각종 전자문서 생성, 전자 결제, 온라인 보험 가입, 해운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료

  • PDF

항목 내용물의 클러스터 정보를 고려한 협력필터링 방법의 확률적 재해석 (Probabilistic Reinterpretation of Collaborative Filtering Approaches Considering Cluster Information of Item Contents)

  • 김병만;이경금;오상엽
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.901-911
    • /
    • 2005
  • 인터넷의 상업적 이용이 증가하고 인터넷에서 쉽게 얻을 수 있는 정보의 양이 풍성해지면서 정보 필터링 (information filtering) 기법은 대량의 정보 공간에서 사용자의 요구와 기호에 맞는 항목을 찾는 과정에 널리 사용되고 있다. 많은 협력필터링 (collaborative filtering) 시스템이 사용자 평가를 기반으로 사용자나 항목들 사이의 유사성을 찾아내고 이를 바탕으로 추천을 해왔지만 사용자 편향 (user bias), 비전이 연관 (non-transitive association), cold start 문제와 같이 성능을 높이기 위해 해결해야 할 문제들이 남아있다. 이 세 가지 문제는 사용자나 항목들 사이에 더 정확한 유사도를 찾아내는 과정에 장애가 된다. 본 논문에서는 이러한 문제들을 해결하기 위해 제안된 UCHM 및 ICHM 방법을 확률적으로 재해석하였다. 이 확률적 모델은 객체 (사용자 또는 품목)들을 그룹들로 구분하고 각 그룹 내에서 사용자 평가가 가우시안 분포를 따른다는 가정 하에 사용자들이 무엇을 선호할 것인지 예측한다. 실세계 자료에 대한 실험 결과, 제안된 방식이 다른 방식들과 비교할 만한 성능을 보인다는 것을 확인할 수 있었다.

사용자의 행동 분석을 위한 과거 기록의 협력 필터링 적용 (Applying Collaborative Filtering for Analysis of User's behavior)

  • 김용준;박정은;오경환
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.1289-1297
    • /
    • 2006
  • 모든 곳에 존재하는 네트워크 환경을 의미하는 '유비쿼터스' 시대와 최신 기술로 구현되어 인간을 도와주는 '지능형 로봇'의 시대가 도래하고 있다. 기술의 흐름은, 이제 우리에게 공장과 공원 등의 공공 장소뿐 만이 아니라, 생활의 기본이 되는 가정 안에서의 로봇을 받아들일 준비를 요구하고 있다. 로봇과 사용자는 실제 생활 속에서 많은 상호 작용을 하게 되며, 필연적으로 여러 가지의 불확실성을 내포하게 되는데, 각각의 요청들과 상황들은, 미리 정해진 규칙에 의거해 처리하기에는 너무 다양하다. 그 어려움을 극복하는 방법으로, 어떤 상황에 적응하는 방법으로 기억을 사용 하는 인간과 마찬가지로, 로봇은 새로운 요청을 처리하기 위해 과거의 기록을 사용할 수 있다. 여러 가지 과거의 기록들을 잘 정리해서 분류하여 저장해둔 후, 현재의 요청에 대한 답으로, 가장 가능성 있는 과거의 기록을 찾아내는 것이다. 본 논문에서는 사용자와 로봇 사이에서 상호 작용에서 발생할 수 있는 불확실성을 과거기록의 탐색을 통해 해결하고자 하였다. 과거 기록은 시간, 장소, 대상 물건, 행동 유형으로 구분되어 저장하였으며, 각각의 유사 가능성(Possibility)들의 합을 기준으로, 전체 기록을 K-Means 알고리즘을 통하여 군집화하고 협력 필터링을 기반으로 현재의 요청이 담고 있는 불확실성에 대한 가능성 있는 값을 추천해 주었다. 제한된 공간과 제한된 자료의 수에 의한 실험 결과로서의 한계를 가지고 있지만, 실제 가정용 로봇에서의 적용 가능성을 보여주었다.

  • PDF