• Title/Summary/Keyword: 혈류펌프

Search Result 30, Processing Time 0.021 seconds

Comparison of Pulsatile and Non-Pulsatile Extracorporeal Circulation on the Pattern of Coronary Artery Blood Flow (체외순환에서 박동 혈류와 비박동 혈류가 관상동맥 혈류양상에 미치는 영향에 대한 비교)

  • Son Ho Sung;Fang Yong Hu;Hwang Znuke;Min Byoung Ju;Cho Jong Ho;Park Sung Min;Lee Sung Ho;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.2 s.247
    • /
    • pp.101-109
    • /
    • 2005
  • Background: In sudden cardiac arrest, the effective maintenance of coronary artery blood flow is of paramount importance for myocardial preservation as well as cardiac recovery and patient survival. The purpose of this study was to directly compare the effects of pulsatile and non-pulsatile circulation to coronary artery flow and myocardial preservation in cardiac arrest condition. Material and Method: A cardiopulmonary bypass circuit was constructed in a ventricular fibrillation model using fourteen Yorkshire swine weighing $25\~35$ kg each. The animals were randomly assigned to group I (n=7, non-pulsatile centrifugal pump) or group II (n=7, pulsatile T-PLS pump). Extra-corporeal circulation was maintained for two hours at a pump flow of 2 L/min. The left anterior descending coronary artery flow was measured with an ultrasonic coronary artery flow measurement system at baseline (before bypass) and at every 20 minutes after bypass. Serologic parameters were collected simultaneously at baseline, 1 hour, and 2 hours after bypass in the coronary sinus venous blood. The Mann-Whitney U test of STATISTICA 6.0 was used to determine intergroup significances using a p value of < 0.05. Result: The resistance index of the coronary artery was lower in group II and the difference was significant at 40 min, 80 min, 100 min and 120 min (p < 0.05). The mean velocity of the coronary artery was higher in group II throughout the study, and the difference was significant from 20 min after starting the pump (p < 0.05). The coronary artery blood flow was higher in group II throughout the study, and the difference was significant from 40 min to 120 min (p < 0.05) except at 80 min. Serologic parameters showed no differences between the groups at 1 hour and 2 hours after bypass in the coronary sinus blood. Conclusion: In cardiac arrest condition, pulsatile extracorporeal circulation provides more blood flow, higher flow velocity and less resistance to coronary artery than non-pulsatile circulation.

Design of pulsatile pump and performance test for pulsatile flow generation (맥동 유동 발생을 위한 맥동 펌프의 설계 및 특성 분석 연구)

  • Joo, Yoon-Ha;Kim, Kyung-Won;Lee, Yeon-Ho;Kwak, Moon-Kyu;Lee, Choon-Young;Lee, Jong-Min;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.149-155
    • /
    • 2013
  • For in-depth research of blood flow, it is important to create pulsating flow like the blood flow from heart beat. In this study, we developed a heart mimicking pulsatile pump and evaluated its performances. Main body of pump was produced using a piston pump, and its rpm and duty ratio was modulated by DC motor and encoder. To determine the part dimensions, principle stress theory and simple fluidic pressure analysis were used. The performance of pulsating pump was evaluated by comparing the pressure values and their deviations according to experimental variables. For the results, the output value of pressure followed the distribution of pulsating flow and its deviation was negligible. Through this study, we expect the established pulsating pump can be widely used in study of blood flow produce easy ways to related researchers.

Study on Electrically Powered Left Ventricular Circulation Assist Device (좌심실 전동순환 보조장치에 관한 연구)

  • Kim, Myoung-Nam;Lee, Jeong-Woo;Chang, Bong-Hyun;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.51-60
    • /
    • 2000
  • This paper outlines the development of a non-pulsatile axial flow type blood pump control system. By utilizing blood pressure and heart rate, this system can assist the left ventricle in controlling blood pressure and blood volume. The system is comprised of a blood pump, signal sensor, signal interface, and signal-processing component. A control algorithm is also proposed which can control non-pulsatile, continuous blood flow in the human circulatory system. To facilitate the control required for non-pulsatile blood pump in a physiological system, an experimental control rule was developed utilizing ECG and blood pressure data, both of which are easily detectable variables in the body. The system was then tested using a mock-up circulation system and we found that it is possible that this systems could be temporarily used in clinic.

  • PDF

Dynamic Performance Evaluation of Blood Flow Simulator Based on Windkessel Models (공기압력모델에 기반한 혈류 시뮬레이터의 동적 특성 평가)

  • Chun, Sejong;Jin, Jonghan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.509-516
    • /
    • 2016
  • A blood flow simulator is one of the experimental devices used to better understand the cardiovascular system. Time-Domain analysis is not sufficient to understand the cardiovascular system because of the effects related to pulsating flows. Even when the mean pressure and mean flow rate of the blood flow simulators are satisfied, the dynamic properties can differ from the desired performance. In this paper, the Windkessel model, a well-known mathematical model of the cardiovascular system, was employed to obtain optimized pressure using initial values. The Windkessel parameters, including flow resistance, R, are expected to lead to a better understanding of the dynamic behavior of cardiovascular systems.

Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system (박동 혈액 순환 모의 시스템에서 시간 동기화된 혈압 및 혈액의 초음파 영상 측정 및 주기적 분석)

  • Min, Soohong;Jin, Changzhu;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.361-369
    • /
    • 2017
  • Hemodynamic information in the carotid artery bifurcation is very important for understanding the development and progression mechanisms of cerebrovascular disease and for its early diagnosis and prediction of the progress. In this paper, we constructed a mock pulsatile blood circulation system using an anthropomorphic elastic vessel of the carotid artery bifurcation and ex vivo pig blood to acquire ultrasound images from blood and vessels synchronized with internal pressure while controlling the blood flow. Echogenicity, blood flow velocity, and blood vessel wall motion from the ultrasound images, and internal blood pressure were extracted over a cycle averaged from five cycles when the pulsatile pump rates are 20 r/min, 40 r/min, and 60 r/min. As a result, respectively, the peak systolic blood flow velocities were 20 cm/s, 25 cm/s, and 40 cm/s, the blood pressure differences were 30 mmHg, 70 mmHg, and 85 mmHg, the arterial walls were expanded to 0.05 mm, 0.15 mm, and 0.25 mm. Time-delayed cyclic variation of echogenicity compared to blood flow and pressure was observed, but the variation was minimal at 20 r/min. Time-synchronized cyclic variations of these parameters are important information for accurate input parameters and validation of the computational hemodynamic experiments which will provide useful information for the development and progress mechanisms of carotid artery stenosis.

Development of pulse diagnosis possible simulator using the stepper motor pumps (스텝 모터 펌프를 이용한 맥진 가능한 시뮬레이터의 개발)

  • Ryu, Geun-Taek;Woo, Sung-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.915-918
    • /
    • 2016
  • Virtual testing devices are required due to rapid changes in the health care industry and the increase of the medical or nursing workforce. The importance of devices such as the simulator, blood vessels, and lab equipment for modeling blood flow to the heart is increasing too. In this study, we made heart pump by using a step motor and developed device which simulates arterial, venous blood pressure, and blood flow. We finally evaluated the function of proposed device. The proposed system is composed of the pump for simulating, the valve device to describe the resistance of the artery and vein, and a reducing device showing the characteristics of the venous system. We used BOXER pump for heart simulator and silicon tube for arterial and venous vessels, and designed a reducing device. We also used the pressure sensor to measure arterial blood pressure. For the evaluation of the proposed system, we selected a range of 50~100mmHg of the blood circuit 60 per minute and then compared the blood pressure of a person and the measured blood pressure.

  • PDF

Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method (퍼지 subtractive 클러스터링 기법을 이용한 좌심실보조장치 모델링 및 흡입현상 검출)

  • Park, Seung-Kyu;Choi, Seong-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.500-506
    • /
    • 2012
  • A method to model left ventricular assist device (LVAD) and detect suction occurrence for safe LVAD operation is presented. An axial flow blood pump as a LVAD has been used to assist patient with heart problems. While an axial flow blood pump, a kind of a non-pulsatile pump, has relative advantages of small size and efficiency compared to pulsatile devices, it has a difficulty in determining a safe pump operating condition. It can show different pump operating statuses such as a normal status and a suction status whether suction occurs in left ventricle or not. A fuzzy subtractive clustering method is used to determine a model of the axial flow blood pump with this pump operating characteristic and the developed pump model can provide blood flow estimates before and after suction occurrence in left ventricle. Also, a fuzzy subtractive clustering method is utilized to develop a suction detection model which can identify whether suction occurs in left ventricle or not.

Application of a Single-pulsatile Extracorporeal Life Support System for Extracorporeal Membrane Oxygenation -An experimental study - (단일 박동형 생명구조장치의 인공폐 적용 -실험연구-)

  • Kim, Tae-Sik;Sun, Kyung;Lee, Kyu-Baek;Park, Sung-Young;Hwang, Jae-Joon;Son, Ho-Sung;Kim, Kwang-Taik;Kim. Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Extracorporeal life support (ECLS) system is a device for respiratory and/or heart failure treatment, and there have been many trials for development and clinical application in the world. Currently, a non-pulsatile blood pump is a standard for ECLS system. Although a pulsatile blood pump is advantageous in physiologic aspects, high pressure generated in the circuits and resultant blood cell trauma remain major concerns which make one reluctant to use a pulsatile blood pump in artificial lung circuits containing a membrane oxygenator. The study was designed to evaluate the hypothesis that placement of a pressure-relieving compliance chamber between a pulsatile pump and a membrane oxygenator might reduce the above mentioned side effects while providing physiologic pulsatile blood flow. The study was performed in a canine model of oleic acid induced acute lung injury (N=16). The animals were divided into three groups according to the type of pump used and the presence of the compliance chamber, In group 1, a non-pulsatile centrifugal pump was used as a control (n=6). In group 2 (n=4), a single-pulsatile pump was used. In group 3 (n=6), a single-pulsatile pump equipped with a compliance chamber was used. The experimental model was a partial bypass between the right atrium and the aorta at a pump flow of 1.8∼2 L/min for 2 hours. The observed parameters were focused on hemodynamic changes, intra-circuit pressure, laboratory studies for blood profile, and the effect on blood cell trauma. In hemodynamics, the pulsatile group II & III generated higher arterial pulse pressure (47$\pm$ 10 and 41 $\pm$ 9 mmHg) than the nonpulsatile group 1 (17 $\pm$ 7 mmHg, p<0.001). The intra-circuit pressure at membrane oxygenator were 222 $\pm$ 8 mmHg in group 1, 739 $\pm$ 35 mmHg in group 2, and 470 $\pm$ 17 mmHg in group 3 (p<0.001). At 2 hour bypass, arterial oxygen partial pressures were significantly higher in the pulsatile group 2 & 3 than in the non-pulsatile group 1 (77 $\pm$ 41 mmHg in group 1, 96 $\pm$ 48 mmHg in group 2, and 97 $\pm$ 25 mmHg in group 3: p<0.05). The levels of plasma free hemoglobin which was an indicator of blood cell trauma were lowest in group 1, highest in group 2, and significantly decreased in group 3 (55.7 $\pm$ 43.3, 162.8 $\pm$ 113.6, 82.5 $\pm$ 25.1 mg%, respectively; p<0.05). Other laboratory findings for blood profile were not different. The above results imply that the pulsatile blood pump is beneficial in oxygenation while deleterious in the aspects to high pressure generation in the circuits and blood cell trauma. However, when a pressure-relieving compliance chamber is applied between the pulsatile pump and a membrane oxygenator, it can significantly reduce the high circuit pressure and result in low blood cell trauma.

Efficacy of Intra-Aortic Balloon Pump in Postcardiotomy Cardiogenic Shock (개심술 후 인공 심폐기 이탈 시 동맥내 풍선 펌프 사용의 유용성)

  • 장지원;민선경;원태희;안재호
    • Journal of Chest Surgery
    • /
    • v.35 no.6
    • /
    • pp.449-453
    • /
    • 2002
  • Intra-aortic balloon pump (IABP) is well known for its hemodynamic benefit but still has its own complications. Proper use of IABP is the best way to obtain maximum benefit with low complication rate. Material and Method: Twenty one(men 10, female 11) patients were included in this study among the 100 consecutive adult cardiac surgery patients in our hospital. Eighteen(85.7%) were ischemic heart disease patients. They all received IABP therapy due to postcardiotomy cardiogenic shock according to the well-known indications. Their preoperative conditions, intraoperative factors including hemodynamics, postoperative conditions and IABP-related complications were analyzed. Result: Nineteen patients(90.5%) were successfully weaned from IABP. There were 2 patients of operative death and the mortality rate was 9.5%. Duration of IABP use was 40.7$\pm$24.3 hours. There were 2 cases(9.5 %) of IABP-related vascular complications that required surgical intervention. Conclusion: We concluded that IABP could be used effectively and safely for postcardiotomy cardiogenic shock patients with low complication rate.

Establishment of Featal Heart Surgery with an Improvement of the Placental Blood Flow in Cardiopulmonary Bypass Using Fetal Lamb Model (양태아를 이용한 심폐우회술에서의 태반혈류개선을 통한 태아심장수술의 기반기술 확립)

  • 이정렬;박천수;임홍국;배은정;안규리
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.11-18
    • /
    • 2004
  • Background: We tested the effect of indomethacine and total spinal anesthesia on the improvement of placental flow during cardiopulmonary bypass on fetal lamb. Material and Method: Twenty fetuses at 120 to 150 days of gestation were subjected to bypass via trans-sternal approach with a 12 G pulmonary arterial cannula and 14 to 18 F venous cannula for 30 minutes. All ewes received general anesthesia with ketamine. In all the fetuses, no anesthetic agents were used except muscle relaxant. Ten served as a control group in which placenta was worked as an oxygenator during bypass (Control group). The remainder worked as an experimental group in which pretreatment with indomethacine and total spinal anesthesia was performed before bypass with the same extracorporeal circulation technique as control group (Experimental group). Observations were made every 10 minutes during a 30-minute bypass and 30-minute post bypass period. Result: Weights of the fetuses ranged from 2.2 to 5.2 kg. In Control group, means of arterial pressure decreased from 44.7 to 14.4 mmHg and means of Pa$CO_2$ increased from 61.9 to 129.6 mmHg at each time points during bypass. Flow rate was suboptimal (74.3 to 97.0 $m\ell$/kg/min) during bypass. All hearts fibrillated immediately after the discontinuation of bypass. On the contrary, in Experimental group, means of arterial pressure reamined higher (45.8 to 30 mmHg) during bypass (p<0.05). Means of Pa$CO_2$ were less ranging from 59.8 to 79.4 mmHg during bypass (P<0.05). Flow rates were higher (78.8 to 120.2 $m\ell$/kg/min) during bypass (p<0.05). There were slower deterioration of cardiac function after cessation of bypass. Conclusion: In this study, we demonstrated that the placental flow was increased during fetal cardiopulmonary bypass in the group pretreated with indomethacine and total spinal anesthesia. However, further studies with modifications of the bypass including a creation of more concise bypass circuit, and a use of axial pump are mandatory for the clinical application.