Comparison of Pulsatile and Non-Pulsatile Extracorporeal Circulation on the Pattern of Coronary Artery Blood Flow

체외순환에서 박동 혈류와 비박동 혈류가 관상동맥 혈류양상에 미치는 영향에 대한 비교

  • Son Ho Sung (Department of Thoracic and Cardiovascular Surgery, Korea University) ;
  • Fang Yong Hu (Korea Artificial Organ Center, Korea University) ;
  • Hwang Znuke (Department of Thoracic and Cardiovascular Surgery, Korea University) ;
  • Min Byoung Ju (Department of Thoracic and Cardiovascular Surgery, Korea University) ;
  • Cho Jong Ho (Department of Thoracic and Cardiovascular Surgery, Korea University) ;
  • Park Sung Min (Department of Thoracic and Cardiovascular Surgery, Korea University) ;
  • Lee Sung Ho (Department of Thoracic and Cardiovascular Surgery, Korea University) ;
  • Kim Kwang Taik (Department of Thoracic and Cardiovascular Surgery, Korea University) ;
  • Sun Kyung (Department of Thoracic and Cardiovascular Surgery, Korea University)
  • 손호성 (고려대학교 의과대학 흉부외과학교실) ;
  • 방영호 (고려대학교 한국인공장기센터) ;
  • 황진욱 (고려대학교 의과대학 흉부외과학교실) ;
  • 민병주 (고려대학교 의과대학 흉부외과학교실) ;
  • 조종호 (고려대학교 의과대학 흉부외과학교실) ;
  • 박성민 (고려대학교 의과대학 흉부외과학교실) ;
  • 이성호 (고려대학교 의과대학 흉부외과학교실) ;
  • 김광택 (고려대학교 의과대학 흉부외과학교실) ;
  • 선경 (고려대학교 의과대학 흉부외과학교실)
  • Published : 2005.12.01

Abstract

Background: In sudden cardiac arrest, the effective maintenance of coronary artery blood flow is of paramount importance for myocardial preservation as well as cardiac recovery and patient survival. The purpose of this study was to directly compare the effects of pulsatile and non-pulsatile circulation to coronary artery flow and myocardial preservation in cardiac arrest condition. Material and Method: A cardiopulmonary bypass circuit was constructed in a ventricular fibrillation model using fourteen Yorkshire swine weighing $25\~35$ kg each. The animals were randomly assigned to group I (n=7, non-pulsatile centrifugal pump) or group II (n=7, pulsatile T-PLS pump). Extra-corporeal circulation was maintained for two hours at a pump flow of 2 L/min. The left anterior descending coronary artery flow was measured with an ultrasonic coronary artery flow measurement system at baseline (before bypass) and at every 20 minutes after bypass. Serologic parameters were collected simultaneously at baseline, 1 hour, and 2 hours after bypass in the coronary sinus venous blood. The Mann-Whitney U test of STATISTICA 6.0 was used to determine intergroup significances using a p value of < 0.05. Result: The resistance index of the coronary artery was lower in group II and the difference was significant at 40 min, 80 min, 100 min and 120 min (p < 0.05). The mean velocity of the coronary artery was higher in group II throughout the study, and the difference was significant from 20 min after starting the pump (p < 0.05). The coronary artery blood flow was higher in group II throughout the study, and the difference was significant from 40 min to 120 min (p < 0.05) except at 80 min. Serologic parameters showed no differences between the groups at 1 hour and 2 hours after bypass in the coronary sinus blood. Conclusion: In cardiac arrest condition, pulsatile extracorporeal circulation provides more blood flow, higher flow velocity and less resistance to coronary artery than non-pulsatile circulation.

배경: 심정지와 같은 위급상황에서 관상동맥의 혈류를 유지하는 것은 심장근육의 보존과 회복 및 환자의 생명을 보존하는 데 중요하다. 최근 들어 Extra-Corporeal Life Support System (ECLS)의 기계식 순환장치의 사용으로 심정지 환자의 생명을 보존하고자 하는 노력이 시도되고 있다 본 연구는 체외순환 모델에서 박동성 혈류와 비박동성 혈류가 관상동맥의 혈류량 및 심근에 미치는 영향에 대해 알아보고자 하였다. 대상 및 방법: 실험은 $25\~35Kg$의 돼지 14마리를 각각 7마리씩 두 군으로 나누어 진행하였다. 제 1군은 비박동성 혈류 펌프인 원심펌프를 사용하였고 제2군은 이중 박동형 펌프를 사용하였다. 체외순환은 우심방에서 상행대동맥으로 심폐바이패스를 하고, 9V의 전기 충격으로 심실세동을 만들었다. 체외순환은 2시간 동안 유지하였으며, 펌프량은 두 군 모두 2 L/min로 유지하였다. 초음파를 이용한 관상동맥 혈류 측정장치를 이용하여 좌전하행지의 관상동맥 관류량을 펌프 시작 전(기초치)과 시작 후 20분마다 측정하였다. 또한 관상 정맥동의 혈액을 펌프 시작 전(기초치)과 시작 후 1시간, 2시간에 채취하여 두 군간의 심근효소의 차이와 대사물질의 차이를 비교하였다. 각 관찰지표의 군간 비교는 STATISTICA 통계프로그램(Version 6.0)의 Mann-Whitney U test를 이용하였고 통계적 유의수준은 p값이 0.05 이하인 경우로 하였다. 결과: 관상동맥의 저항지수는 제 2군에서 낮게 나타났으며, 펌프 구동 후 40분, 80분, 100분, 120분에서 통계적으로 의미 있게 나타났다 (p<0.05). 관상동맥의 평균 혈류 속도는 제 2군에서 펌프 구동 후 20분부터 의미 있게 높게 유지되었다(p<0.05). 관상동맥의 혈류량도 제2군에서 높게 유지되었으며, 펌프 구동 후 40분, 60분, 100분, 120분에서 통계적으로 의미 있는 차이를 보였다(p<0.05). 그러나, 관상정맥동의 혈액학적 검사에서는 두 군간에 차이가 없었다. 결론: 박동성 혈류는 비박동성 혈류보다 좌전하행지 관상동맥의 저항지수를 낮추고, 관상동맥의 관류속도를 빠르게 하여, 관상동맥으로의 혈류량을 높게 유지하였다.

Keywords

References

  1. Younger JG, Schreiner RJ, Swaniker F, Hirschl RB, Chapman RA, Bartlett RH. Extracorporeal resuscitation of cardiac arrest. Acad Emerg Med 1999;6:700-7 https://doi.org/10.1111/j.1553-2712.1999.tb00438.x
  2. Undar A, Masai T, Yang SQ, et al. Pulsatile perfusion improves regional myocardial blood follow during and after hypothermic cardiopulmonary bypass in a neonatal piglet model. ASAIO J 2002;90-5
  3. Akasaka T, Yamamuro A, Kamiyama N, et al. Assessment of coronary flow reserve by coronaty pressure measurement. J Am Coll Cardiol 2003;41:1554-60 https://doi.org/10.1016/S0735-1097(03)00258-4
  4. Willms DC, Atkins PJ, Dembitsky WP, Jaski BE, Gocka I. Analysis of clinical trends in program of emergent ECLS for cardiovascular collapse. ASAIO J 1997;43:65-8
  5. Walker G, Liddell M, Davis C. Extracorporeal life support-state of the art. Paediatr Respir Rev 2003;4:147-52 https://doi.org/10.1016/S1526-0542(03)00021-6
  6. Brandes H, Albes JM, Conzelmann A, Wehrman M, Ziemer G. Comparison of pulsatile and nonpulsatile perfusion of the lung in an extracorporeal large animal model. Eur Surg Res 2002;34:321-9 https://doi.org/10.1159/000063067
  7. Undar A, Masai T, Frazier OH, Fraser CD. Pulsatile and nonpulsitile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. ASAIO J 1999;610-4
  8. Nose Y, Koji K, Tadashi N. Can we develop a nonpulsatile permanent rotary blood pump? yes we can. Artif Organs 1996;20:467-74 https://doi.org/10.1111/j.1525-1594.1996.tb04466.x
  9. Zumbro GL, Shear G, Fishback ME, Galloway RF. A prospective evaluation of the pulsatile assist device. Ann Thorac Surg 1979;25:269-72
  10. Lee HS, Rho YR, Lee HS, et al. In vivo evaluation of pulsatile ECLS system. J Artif Organs 2003;6:25-9 https://doi.org/10.1007/s100470300004
  11. Lodge AJ, Undar A, Daggett CW, Runge Tm, Calhoon JH, Ungerleiger RM. Regional blood flow during cardiopulmonary bypass and after circulatory arrest in an infant model. Ann Thorac Surg 1997;63:1243-50 https://doi.org/10.1016/S0003-4975(97)00238-5
  12. Ciadullo Rc, Schaff HV, Flaherty JT, Donahoo JS, Gott VL. Comparison of regional myocardial blood flow and metabolism distal to critical coronary stenosis in the fibrillating heart during alternate periods of pulsatile and nonpulsatile perfusion. J Thorac Cardiovasc Surg 1978;75:193-205
  13. Maddoux G, Pappas G, Jenkins M, et al. Effect of pulsatile and nonpulsatile flow during cardiopulmonary bypass on left ventricular ejection fraction early after aortocoronary bypass surgery. Am J Cardiol 1976;37:1000-6 https://doi.org/10.1016/0002-9149(76)90415-X
  14. Murkin JM, Marzke JS, Buchan AM, Bentley C, Wong CJ. A randomized study of the Influence of perfusion technique and PH management strategy in 316 patients undergoing coronary artery bypass surgery. 1. Mortality and cardiovascular mobidity. J Thorac Cardiovasc Surg 1995;110:340- 8 https://doi.org/10.1016/S0022-5223(95)70229-6
  15. Jaski BE, Lingle RJ, Overlie P, et al. Long-term survival with use of percutaneous extracorporeal life support in patients presenting with acute myocardial infarction and cardiovascular collapse. ASAIO J 1999;45:615-8 https://doi.org/10.1097/00002480-199911000-00018
  16. Hill JG, Bruhn PS, Cohen SE, et al. Emergent application of cardiopulmonary support: A multiinstitutional experience. Ann Thorac Surg 1992;54:699-704 https://doi.org/10.1016/0003-4975(92)91014-Z
  17. Takatani S. Can rotary blood pumps replace pulsatile devices? Artif Organs 2001;25:671-4 https://doi.org/10.1046/j.1525-1594.2001.00870.x
  18. Pennati G, Fiore GB, Lagana K, Fumero R. Mathematical modeling of fluid dynamics in pulsatile cardiopulmonary bypass. Artif Organs 2004;28:196-209 https://doi.org/10.1111/j.1525-1594.2003.47197.x
  19. Louagie YA, Gonzalez M, Collard E, et al. Does flow character of cardiopulmonary bypass make a difference? J Thorac Cardiovasc Surg 1992;104:1628-38
  20. Hickey PR, Buckley MJ, Philbin DM. Pulsatile and nonpulsatile cardiopulmonary bypass: Review of a counterproductive controversy. Ann Thorac Surg 1983;36:720-37 https://doi.org/10.1016/S0003-4975(10)60286-X
  21. Fukae K, Tominaga R, Tokunaga S, Kawachi Y, Imaizumi T, Yasui H. The effects of pulsatile and nonpulsatile systemic perfusion on renal sympathetic nerve activity in anesthetized dogs. J Thorac Cardiovasc Surg 1996;111:478-84 https://doi.org/10.1016/S0022-5223(96)70459-2
  22. Minami K, Korner MM, Vyska K, Kleesiek K, Knobi H, Korfer R. Effects of pulsatile perfusion on plasma catecholamine levels and hemodynamics during and after cardiac operations with cardiopulmonary bypass. J Thorac Cardiovasc Surg 1990;99:82-91
  23. Nakano T, Tominaga R, Ichiro N, Hayato O, Yasui H. Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. Am J Physiol Heart Circ Physiol 2000;278:1098-104 https://doi.org/10.1152/ajpheart.2000.278.4.H1098
  24. Orime Y, Shiono M, Hata H, et al. Cytokine and endothelial damage in pulsatile and nonpulsatile cardiopulmonary bypass. Artif Organs 1999; 23:508-12 https://doi.org/10.1046/j.1525-1594.1999.06392.x
  25. Milnor WR. Pulsatile blood flow. New Engl J Med 1972;287:27 https://doi.org/10.1056/NEJM197207062870108
  26. Paquet KJ. Hemodynamic studies on normothermic perfusion of the isolated pig kidney with pulsatile and nonpulsatile flows. J Cardiovasc Surg 1969;1:45-9
  27. Oldenburg O, Eggebrecht H, Gutersohn A, et al. Myocardial lactate release after intracoronary verapamil application in humans: acute effects of intracoronary verapamil on systemic and coronary hemodynamics, myocardial metabolism, norepinephrine levels. Cardiovasc Drug Ther 2001;15: 55-61 https://doi.org/10.1023/A:1011162818809
  28. Bortone F, Massoni M, Repossini A, et al. Myocardial lactate metabolism in relation to preoperative regional wall motion and to early functional recovery after coronary revascularization. J Cardiothorac Vasc Anesth 2003;17:478-85 https://doi.org/10.1016/S1053-0770(03)00153-8
  29. Michael DC. Intraoperative metabolic monitoring of the heart: I. Clinical assessment of coronary sinus metabolites. Ann Thorac Surg 2001;72:2220-6 https://doi.org/10.1016/S0003-4975(01)03296-9
  30. Nagaoka H, Inammi R, Watanabe M, Satoh M, Murayama F, Funakoshi N. Preservation of pancreatic beta cell function with pulsatile cardiopulmonary bypass. Ann Thorac Surg 1989;48:798-802 https://doi.org/10.1016/0003-4975(89)90673-5