DOI QR코드

DOI QR Code

Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system

박동 혈액 순환 모의 시스템에서 시간 동기화된 혈압 및 혈액의 초음파 영상 측정 및 주기적 분석

  • 민수홍 (제주대학교 해양시스템공학과) ;
  • 김창수 (대구경북첨단의료산업진흥재단 첨단의료기기 개발 지원센터) ;
  • 팽동국 (제주대학교 해양시스템공학과)
  • Received : 2017.07.19
  • Accepted : 2017.09.28
  • Published : 2017.09.30

Abstract

Hemodynamic information in the carotid artery bifurcation is very important for understanding the development and progression mechanisms of cerebrovascular disease and for its early diagnosis and prediction of the progress. In this paper, we constructed a mock pulsatile blood circulation system using an anthropomorphic elastic vessel of the carotid artery bifurcation and ex vivo pig blood to acquire ultrasound images from blood and vessels synchronized with internal pressure while controlling the blood flow. Echogenicity, blood flow velocity, and blood vessel wall motion from the ultrasound images, and internal blood pressure were extracted over a cycle averaged from five cycles when the pulsatile pump rates are 20 r/min, 40 r/min, and 60 r/min. As a result, respectively, the peak systolic blood flow velocities were 20 cm/s, 25 cm/s, and 40 cm/s, the blood pressure differences were 30 mmHg, 70 mmHg, and 85 mmHg, the arterial walls were expanded to 0.05 mm, 0.15 mm, and 0.25 mm. Time-delayed cyclic variation of echogenicity compared to blood flow and pressure was observed, but the variation was minimal at 20 r/min. Time-synchronized cyclic variations of these parameters are important information for accurate input parameters and validation of the computational hemodynamic experiments which will provide useful information for the development and progress mechanisms of carotid artery stenosis.

뇌혈관 질환의 발생 및 진행 기작을 이해하고 그 질환의 조기진단과 진행예측을 위해서는 경동맥 분지에서의 혈류역학 정보가 매우 중요하다. 본 논문에서는 정상인 경동맥 분지 탄성 모형 혈관과 생체 외 돼지혈액을 이용하여 모의박동 혈액 순환 시스템을 구축하여 혈류를 조절하면서 혈관과 혈액의 초음파 영상을 내부 압력과 시간 동기화하여 측정하였다. 박동 펌프의 박동률이 분당 20회, 40회, 60회(r/min)일 때의 초음파 영상의 에코 값, 혈류속도, 혈관 벽의 움직임, 혈압을 펌프의 5주기 동안 평균하여 한 주기의 데이터를 추출하였다. 결과로 박동률이 20 r/min, 40 r/min, 60 r/min일때 수축기 최고 혈류 속도는 각각 20 cm/s, 25 cm/s, 40 cm/s, 혈압 차는 각각 30 mmHg, 70 mmHg, 85 mmHg, 동맥벽은 각각 0.05 mm, 0.15 mm, 0.25 mm로 확장 하였다. 에코의 주기적 변화는 혈류속도와 압력과는 시간 지연이 있었으며 20 r/min에서는 변화량이 최소였다. 이러한 시간 동기화된 인자들의 주기적 변화는 전산혈류역학 실험의 정확한 입력정보와 검증을 위한 중요한 정보이며 경동맥 협착 질환의 발생 및 진행 기작을 밝히는데도 유용한 정보를 제공할 것이다.

Keywords

References

  1. J. J. Chiu and S. Chien, "Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives," Phys. Rev. 91, 327-387 (2011).
  2. D. R. Wells, J. P. Archie, and C. Kleinstreuer, "Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients," J. vasc. surg. 23, 667-678 (1996). https://doi.org/10.1016/S0741-5214(96)80048-6
  3. A. M. Malek, S. L. Alper, and S. Izumo, "Hemodynamic shear stress and its role in atherosclerosis," The Jama network 282, 2035-2042 (1999).
  4. D. G. Paeng, K. H. Nam, and K. K. Shung, "Cyclic and radial variation of the echogenicity of blood in human carotid arteries observed by harmonic imaging," Ultrasound in medicine & biology 36, 1118-1124 (2010). https://doi.org/10.1016/j.ultrasmedbio.2010.03.021
  5. E. Yeom, K. H. Nam, D. G. Paeng, and S. J. Lee, "Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry," Ultrasonics 54, 1480-1487 (2017).
  6. Z. Qin, L. G. Durand, and G. Cloutier, "Kinetics of the "black hole" phenomenon in ultrasound backscattering measurements with red blood cell aggregation," Ultrasound in medicine & biology 24, 245-256 (1998). https://doi.org/10.1016/S0301-5629(97)00273-1
  7. T. Bok, Y. Li, K. Nam, J. C. Choi, and D. Paeng, "Feasibility study of high-frequency ultrasonic blood imaging in the human radial artery," J. Med. Biol. Eng. 35, 21-27 (2015). https://doi.org/10.1007/s40846-015-0001-3
  8. K. H. Nam, T. H. Bok, C. Jin, and D. G. Paeng, "Asymmetric radial expansion and contraction of rat carotid artery observed using a high-resolution ultrasound imaging system," Ultrasonics 54, 233-240 (2014). https://doi.org/10.1016/j.ultras.2013.04.012
  9. E. Yeom, K. H. Nam, C. Jin, D. G. Paeng, and S. J. Lee, "3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images," Ultrasonics 54, 2184-2192 (2014). https://doi.org/10.1016/j.ultras.2014.06.002
  10. C. Jin, K. H. Nam, and D. G. Paeng, "Asymmetric pulsation of rat carotid artery bifurcation in three-dimension observed by ultrasound imaging,Int. J. Cardiovasc. Imaging 32, 1499-1508 (2016). https://doi.org/10.1007/s10554-016-0934-9
  11. C. H. Leow, E. Bazigou, R. J. Eckersley, C. H. Alfred, P. D. Weinberg, and M. X. Tang, "Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: Methods and initial in vitro and in vivo evaluation," Ultrasound in medicine & biology 41, 2913-2925 (2015). https://doi.org/10.1016/j.ultrasmedbio.2015.06.012
  12. E. Franceschini, F. T. Yu, F. Destrempes, and G. Cloutier, "Ultrasound characterization of red blood cell aggregation with intervening attenuating tissue-mimicking phantoms," J. Acoust. Soc. Am. 127, 1104-1115 (2010). https://doi.org/10.1121/1.3277200
  13. D. G. Paeng, R. Y. Chiao, and K. K. Shung, "Echogenicity variations from porcine blood I: The "bright collapsing ring," under pulsatile flow," Ultrasound in medicine & biology 30, 45-55 (2004). https://doi.org/10.1016/j.ultrasmedbio.2003.08.015
  14. A. J. Chee, C. K. Ho, B. Y. Yiu, and C. H. Alfred, "Walled carotid bifurcation phantoms for imaging investigations of vessel wall motion and blood flow dynamics," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1852-1864 (2016). https://doi.org/10.1109/TUFFC.2016.2591946