• Title/Summary/Keyword: 현행설계법

Search Result 124, Processing Time 0.026 seconds

A Study on Reliability Based Design Criteria for Erection Members (가설부재의 신속성 설계기준에 관한 연구)

  • 민경주
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.56-63
    • /
    • 1991
  • This study investigates reliability based design criteria for the erection members, and proposes practical algorithm which is based on Ellingwood's algorithm for the reliability analysis and the derivation of reliability based criteria. The magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. And thus the uncertainties so obtained are applied for the reliability analysis and the derivation of reliability based design criteria. A target reliability($\beta$$_{o}$=2.0) is selected as an appropriate value by analyzing the reliability levels of our current USD and WSD design standards. Them a set of load and resistance factors corresponding to the target reliability is proposed as a reliability based design provision, and furthermore a set of allowable stresses for steel having same level of reliability with the corresponding LRFD criteria is also prepared for the current WSD design provision. It may be concluded that the proposed LRFD reliability based design provisions and the corresponding allowable stresses give more rational design than the current code for erection membars.s.s.

  • PDF

A Study on Reliability of Current Ultimate Strength Design for Reinforced Concrete (현행(現行) 철근(鐵筋)콘크리트 극한강(極限强) 설계법(設計法)의 신뢰성(信賴性)에 관(關)한 연구(硏究))

  • Lee, Bong Hak
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.3-11
    • /
    • 1982
  • Reliability analysis methods have been employed in this study to determine the safety index ${\beta}$ for flexure associated with reinforced concrete designs that are in accordance with current USD code of Korea. In reliability analysis, the mean first-order second-moment methods are employed. The following specific conclusions can be drawn from this study; 1) Levels of safety for reinforced concrete design, measured by ${\beta}$, vary from 2.8 to 3.8 in flexure depending on the limit state, the ratio of live load to dead load and the uncertainties. 2) Target reliability ${\beta}$ associated with reinforced concrete beams in flexure is assumed to be 3.5~4.0 in Korea. 3) Load factors and resistance factors in flexure associated with the current provisions contained in USD code generally seem to be too high. The writer concluded the factors as following; ${\phi}=0.8,\;{\gamma}_D=1.1\;{\gamma}_L=1.75$.

  • PDF

국내원전 기술지침서 개선방안

  • 유영우;류용호;신원기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1035-1040
    • /
    • 1995
  • 설계기준사고에 대한 해석을 기초로 하여 운전중 원전의 운전 제한치 및 조치사항을 규정한 기술지침서 (Tech Spec.)는 원자력법에 의거 법적 제재의 효력을 가지며 원전 운전자가 이를 준수함으로서 안전성을 확보할 수 있도록 되어 있다. 그러나 국내 원전 기술지침서의 경우는 해당 노형 공급국별로 상이한 체재의 기술지침서를 도입하여 사용하는 과정에서 많은 문제점이 발생하고 있다. 본 연구에서는 국내 원전 기술지침서 개선을 위하여 현행 국내 기술지침서의 사용상 문제점을 조사하고 그 결과에 대한 분석을 실시하였으며. 최근 미국에서 진행되고 있는 기술지침서 개선작업의 현황을 조사하고 그 적용성을 검토하였다. 새로이 제시되고 있는 기술지침서는 운전 요건의 일관성, 사용자 편이성에서 큰 잇점이 예상되므로 기존 기술지침서 요건의 개정 등 인허가 시에 기준으로 사용될 수 있을 것으로 판단된다.

  • PDF

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.

The Environmental Impact Assessment of at Road Design in the Light of the Sense for the Real from the Virtual Reality (환경영향평가를 위한 VR기법으로 현실감을 고려한 도로설계)

  • Choi, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1842-1847
    • /
    • 2006
  • This paper is the environmental impact assessment of at road design in the light of the sense for the real from the virtual reality. For In this papers, This study developed 3D-model and virtual reality contents by suggesting the environmental impact assessment based on GIS in the road design. Ant through this process, it's possible to visualize the environmental impact assessment by constructing the 3D-model and simulation. The 3D-model can be a method to show the road effectively by maximizing the road's shape visually after the construction. The main construction which composes polyhedron model that is generated from digital map and aerial photo is built by mapping the real texture, so the Sense for the Real was more heightened. Through this study, it must be made to shorten a long time exhausting period of conference and construct more real road after due scene consideration by specific and various low-cost strategy in the environmental impact assessment afterwards.

Analysis of Structural and Thermal Parameters for Evaluating Fire Resistance of Steel Beams (철골보의 내화시간 평가를 위한 구조 및 열적 변수해석)

  • Park, Han Na;Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • This paper proposes a versatile formula which can be used to evaluate the fire resistant time of steel beams under various design conditions. Towards this end, the key parameters which affect the fire performance of steel beams were first determined through thermo-mechanical considerations, and classified into two groups: structural parameters and thermal parameters. Then the degree of influence of each parameter on the fire performance was investigated through a fully coupled thermo-mechanical analysis up to the occurrence of run-away deflection. The accuracy of the numerical model used was verified using an available full-scale fire test before conducting an extensive parametric analysis. Multiple linear regression analysis was performed to obtain the formula which can be used to predict the fire resistance time of steel beams under various design conditions. The statistical analysis showed that the proposed formula is very robust. The application of the formula in practical fire design under the current code was illustrated in detail. The economy and other advantages of the proposed formula were clearly shown.

A Study on the Design Method of the Reinforced Earth Structures Considering Compaction Induced Stresses (다짐 유발응력을 고려한 보강토 설계방법에 관한 연구)

  • 임철웅;백영식
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.5-16
    • /
    • 1992
  • The main purpose of this the sutdy is to develop the reinforced earth structure design method considering induced stresses and deflections resulting from placement and compaction of soil. In this paper, the new reinforcement Geolog developed by the author is also introduced which is being used as one of the effective earth reinforcing structure against compaction induced stresses. This study adopted the Seed's bilinear model in the estimation of the com paction induced stresses and compute the peak lateral stresses during compaction by doubled Boussinessq's elastic solution of mirror image theory, thereafter, calculate the residual compaction induced lateral stresses from the above peak lateral stress by the residual fraction. It is considered to be reasonable that the compaction induced stresses be added to the lateral earth pressures estimated from conventional gravity analysis considering the actual stresses during service life of the structures. "GEOLOG", a composite of steel bar and attached concrete stopper is found to be effective against tension and pull - out failure. In this paper, the design method considering the compaction induced stresses and the effect of Geolog reinforcement is suggested for the remforced earth structures where backkfill settlement on displacements are not allowed as in the cases of the bridge abutments or double faced reinforcement earth structures.tructures.

  • PDF

A Study about Behavior of Steel Column Members under Varying Axial Force (변동축력에 의한 철골기둥부재의 거동에 관한 연구)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Park, Hae-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • The performance-based design is highlighted as an alternative for the current design method, which cannot definitely specify the performance level that a building requires. Research on it is already in progress, however, in developed countries like the United States and Japan, to establish the basis for a performance-based design. Many studies on such design are also being conducted in South Korea, but South Korea still lags behind other countries in all-around technology. On the other hand, the column members, especially the lower external column, are affected by the variation of the axial force by overturning the moments in the case of lateral loads by earthquake. Varying the axial force can affect the time of local buckling and the ultimate behavior. Thus, in this study, the structural performance, such as the time of local buckling and the ultimate behavior, was analyzed through an experimental study on column members under varying axial force. The feasibility of a domestic study proposing a performance level with a story drift angle formed about a structural-performance-based steel structure design was also verified.

Prediction of Failure Strength of Reinforced Concrete Deep Beams using Two-dimensional Grid Strut-Tie Model Method (2차원 격자 스트럿-타이 모델 방법에 의한 철근콘크리트 깊은 보의 파괴강도 예측)

  • Yun, Young Mook;Kwon, Sang Hyok;Chae, Hyun Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.605-615
    • /
    • 2016
  • It is difficult to form a rational strut-tie model that represents a true load transfer mechanism of structural concrete with disturbed stressed region(s). To overcome the difficulty and handle numerous load cases with just one strut-tie model, a two-dimensional grid strut-tie model method was proposed previously. However, the validity of the method was not fully examined, although the incorporated basic concepts and new methods regarding the effective strength of concrete strut, load carrying capacity of struts and ties, and geometrical compatibility of grid strut-tie model were explained in detail. In this study, for accurate strength analysis and reliable design of reinforced concrete deep beams, the appropriateness of the two-dimensional grid strut-tie model method is verified. For this, the failure strength of 237 reinforced concrete deep beams, tested to shear failure, is predicted by the two-dimensional grid strut-tie model method, and the results are compared with those obtained by the sectional shear design methods and conventional strut-tie model methods of current design codes.

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.