• Title/Summary/Keyword: 현장적용 성능평가

Search Result 555, Processing Time 0.03 seconds

A Study on Controller for Car Parking System (주차설비 시스템의 제어장치에 관한 연구)

  • 정재윤
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.6
    • /
    • pp.60-68
    • /
    • 1993
  • 본 논문에서는 주차설비의 제어장치와 기계장치 설계와 시뮬레이터를 구현한다. 이 제어기는 다층각형순환식 주차설비 시스템의 제어에 적용될 수 있도록 한다. 또, 주차설비 제어장치의 정확한 동작을 확인할 수 있는 시뮬레이터를 개발한다. 시뮬레이터 개발의 목적은 기계장치 대신에 현장에 있는 기계장치와 제어 신호면에서 완전히 일치하는 시뮬레이터를 고안하여 실제 기계장치 없이 주차설비 제어장치의 개발에 도움을 줄 수 있게 하기 위한 것이다.주차설비의 성능평가 문제는 제한된 공간안에서 어떻게 많은 차를 적재하느냐 하는 문제와 시간적으로 얼마나 빨리 입,출고 시킬 수 있느냐에 달려 있다. 따라서, 주차설비의 입,출고 시간을 최소로 하는 시간최적 앨고리즘을 고안한다. 이 제어장치와 시뮬레이터는 모두 인텔 8086 CPU로 실현한다.

  • PDF

Flowing Characteristic of High Flowing Self-Compacting Concrete with mixing Steel Fiber (강섬유 혼입에 따른 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Choi, Wook;Kim, Gi-Beom;Jeong, Jae-Gwon;Ahn, Tae-Ho;Eom, Joo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.461-464
    • /
    • 2008
  • This study is compactability and Passing ability to get to know the flowing characteristic of high flowing self-compacting concrete with mixing steel fiber of various size and diameter. After flowing test, size and diameter are getting longer, flowing performance is getting lower. It meets the standard of combined high flowing self-compacting concrete of JSCE 2 grade and passing performance from ASTM C 1621. Through this study, it can be possible to be applied in site of HSCC with mixing steel fiber.

  • PDF

Study on the Field Application of Insulation Performance Improvement Concrete (단열성능 향상 콘크리트의 현장 적용성 평가에 관한 연구)

  • Kang, Sung-Hyuk;Kim, Jung-Ho;Choo, Kyoung-Nam;Park, Young-Shin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.17-18
    • /
    • 2014
  • Recently, climate change have increased consumption of building heating and cooling energy. Therefore, various actions to reduce greenhouse gas and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. Especially the outer covering of the building has been made of concrete more than 70%. But a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research is structural insulation concrete what improved insulation performance using Micro Form Admixture and Calcined Diatomite Powder and Lightweight Aggregate.

  • PDF

Design and Implementation of a Students′ Achievement Analysis System using OLAP Technology (OLAP 기술을 이용한 학업성취도 분석 시스템(SAAS)의 설계 및 구현)

  • Park, Mi-Hyeon;Kim, Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.6
    • /
    • pp.450-459
    • /
    • 2001
  • 다각도로 분석된 학업 성취도를 신속하게 제공받는 학생들은 그렇지 않은 학생들에 비해 차후에 더 나은 학업 성과를 보인다. 그러나 현재의 한국 학교 현장에서 시행되고 있는 평가 방법을 이를 반영하지 못하고 있다. 본 연구에서는 이러한 서비스를 온라인으로 교사와 학생에게 제공하는 ‘학업성취도 분석시스템’인 SAAS를 설계하고 구현하였다. 이 시스템은 비즈니스 데이터를 다차원적으로 분석하여 부가가치를 창출하는데 쓰이는 신기술인 OLAP을 이용한다. 학생, 과목, 기간 차원에 대한 종합적 성취도 분석 결과가 산출되고, 이는 편리한 인터페이스를 통해 제공된다. 시스템의 성능향상을 위해서 분석결과의 부분적 사전연산 방식과 큐브의 청크 단위 저장 방식이 사용되었다. SAAS는 전국 단위 학생 성적 분석을 위해서도 쓰일 수 있을 정도로 성능면에서 확장성을 지니며, 제 7차 교육과정 개혁에도 적용이 가능하다.

  • PDF

Load Carrying Capacity Evaluation of Single Span Bridge using Impact Factor Response Spectrum (충격계수 응답스펙트럼을 이용한 단경간 교량의 내하력 평가)

  • Lee, Huseok;Roh, Hwasung;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.730-736
    • /
    • 2016
  • In a previous study, the impact factor response spectrum and corresponding method for evaluating the load carrying capacity of bridges was suggested to improve the existing evaluation method. To verify the applicability of the suggested method, which is based on the frequency of bridges, the dynamic characteristic test for an actual single span simply-supported bridge was conducted. Through a field test under ambient traffic conditions, the dynamic response of the bridge was obtained using wireless accelometers and its fundamental frequency was identified. The peak impact factor was determined from the identified frequency and the impact factor response spectrum. The load carrying performance variation of the bridge was estimated considering the performance reduction factor, which was calculated using the current and previous natural frequency and impact factor. From the result, the load carrying capacity of the bridge was decreased, but the capacity was still enough because its value is greater than the design live load. Through the overall procedures and technical details presented in this paper, the suggested evaluation method can be applied to actual bridges with the acceleration data measured under ambient traffic conditions and the impact factor response spectrum.

A Study on Performance of Steel Monocell Expansion Joints (강재형 모노셀 신축이음장치 성능 연구)

  • Kim, Yong-Hoon;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2019
  • Studies have been made on performance evaluation of expansion joint systems for an ordinary highway or road bridge. However little study has been made for runway connection bridges at airports. A study on performance evaluated from computer code analysis and shrinkage, extension, and compression repetition tests based on KS F 4425 is conducted to a newly developed expansion joint system which has been installed in a runway connection bridge at Incheon Airport Extension 2 Construction Site. The MIDAS computer code is used to analyze the performance before the manufacture of the mock-up of expansion joint system on the basis of design requirements. Tests based on the KS F 4425 of 2001 year-version are conducted for the mock-up. Domestic codes and standards to validate the performance of the expansion joint system in a connection bridge have been developed for a vehicle. However the expansion joint system tested in this study is installed in a runway connection bridge for an aircraft. Conservatively the heaviest one among airplanes departing and landing at Incheon Airport is assumed level-F $468.4kN/m^2$ and adopted for the tests and analyses in this study. KS F 4425 method is selected for the shrinkage, extension, and compression repetition tests. No remarkable problem was observed for the 2,500-cycle shrinkage and extension and two million-cycle repeatition load tests. The results of this study are expected to contribute to establishment of code and standard for the performance validation of an expansion joint system installed in a runway connection bridge for an aircraft by providing performance test results and computer analysis results based on finite element methods.

Reinforcement of Collapsed Railway Subgrade and Line Capacity Increase Using Short Reinforcement with Rigid Wall (짧은 보강재와 일체형 강성벽체를 활용한 철도 붕괴노반 보강 및 선로용량 증대 기술)

  • Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.604-609
    • /
    • 2016
  • This study evaluated the long-term performance of RSR (Reinforced Subgrade for Railways) technology which increases the railway line capacity without the need for additional land. Its characteristics include the use of a short reinforcement with rigid wall, which make it possible to apply it in confined spaces. The 7m high and 40m long testbed employed to evaluate the long-term performance was designed and constructed near Jupo station on the Chang-hang line. This line, located close to a local bus route, had collapsed at the subgrade following heavy rainfall. The performance of the new type of subgrade was verified with long term measurements over a 2 year period including the surface and ground settlement, horizontal displacement of the wall, tensile strain of the reinforcement, and settlement of the rail top on the side track. Based on the results of the measurements made until now, we concluded that it had sufficient safety and serviceability for use as a railway subgrade. It is expected that RSR technology could be frequently used at sites which lack the necessary construction materials for an embankment and are located close to functional railway lines and boundaries, in order to settle civil complaints.

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

Analysis on Bond Characteristics of Reinforcements for UHPC Hybrid Cable-Stayed Bridge Deck Joints (초고성능 콘크리트 하이브리드 사장교 바닥판 접합부 철근의 부착 성능에 대한 해석)

  • Seonwoo, Yoon Ho;Park, Sung Kyun;Kwahk, Im Jong;Yoon, Young Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.207-214
    • /
    • 2011
  • Ultra High Performance Concrete (UHPC), which is characterized by its high strength and advanced ductile behavior that is much superior to those of convention concrete, is a useful material to make thinner and longer bridges. The precast segmental construction method utilizing UHPC has been mainly studied because cast-in-place UHPC is very difficult and complicate to be achieved. As a part of those research, the structural performance evaluation of different types of joint connection method for hybrid cable-stayed bridge utilizing UHPC by using nonlinear analyses is performed in this study. The bond stress at joint is obtained by section force analyses for a 600 m cable-stayed bridge deck, and compared with the required bond stress at joint. Analysis results show that the U Type connection and straight type connection resist the highest ultimate load and bond strength, respectively. In addition, all considered joint connection systems satisfy the bond performances at joint required in the final stage of cable-stayed bridge utilizing UHPC.