• Title/Summary/Keyword: 현장압축강도

Search Result 535, Processing Time 0.021 seconds

Fundamental Evaluation and Hydration Heat Analysis of Low Heat Concrete with Premixed Cement (저발열형 Premixed Cement를 사용한 콘크리트의 기초물성 평가 및 수화열 해석에 관한 연구)

  • Yoon, Ji-Hyun;Jeon, Joong-Kyu;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump, compressive strength and dry shrinkage according to concrete with premixed cement, ternary concrete and OPC concrete for using concrete with premixed cement. The results of experiment are founded that concrete with premixed cement have sufficient performances such as workability, compressive strength and dry shrinkage. Also, the results of hydration heat analysis are founded that concrete with premixed cement have more performance than ternary concrete and OPC concrete at a point of view for the quality control such as thermal crack reducing and economic benefit. Therefore, it is desirable that concrete with premixed cement should be used to rise durability performance and convenience of maintenance.

Analysis on Physical and Mechanical Properties of Rock Mass in Korea (국내에 분포하는 암반의 물리·역학적 특성 분석)

  • Seo, Yong-Seok;Yun, Hyun-Seok;Kim, Dong-Gyou;Kwon, O-Il
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.593-600
    • /
    • 2016
  • To understand the mechanical properties of rock masses and intact rock in Korea, data from 4,280 in situ and laboratory tests from 107 tunnels on general national roads were analyzed. The mechanical properties (unit weight, cohesion, friction angle, modulus of deformation, Young's modulus, Poisson's ratio, uniaxial compressive strength, tensile strength, coefficient of permeability, and specific gravity) were analyzed by rock types and strength of rock in each rock type. The results of analysis, the mean specific gravity was highest in gneiss. The coefficient of permeability and Poisson's ratio show the highest mean values in granite and metamorphic rock, respectively. In addition, the unit weight, cohesion and friction angle in sedimentary rock, modulus of deformation, Young's modulus, uniaxial compressive strength and tensile strength in volcanic rock have the highest mean values. The values for each mechanical property showed wide ranges by the heterogeneity and anisotropy of rock masses in spite of detailed analysis by rock type and classification of rocks according to the strength.

Evaluation of Undrained Shear Strength for Clayey Silt with Low Plasticity from the West Coast (서해안 저소성 점토질 실트 지반의 비배수 전단강도 평가)

  • Kim, Seok-Jo;Lee, Sang-Duk;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.15-25
    • /
    • 2016
  • In order to analyze undrained shear strength for clayey silt with low plasticity from Hwaseong site, a series of laboratory and in-situ tests were performed. The Unconfined Compressive (UC) test and Simple Consolidated-Undrained Triaxial (SCU) test were examined in order to assess their applicability to the measurement of the undrained strength of this soil. In the case of clayey silt with low plasticity, although the samples were properly taken by undisturbed sampling method, the residual effective stress and the unconfined compressive strength were reduced considerably. Therefore, an effective confining pressure that corresponds to the typical marine clay should be applied to the soil specimen before shearing in order to compensate for the loss of residual effective stress. By evaluating the shear strengths of clayey silt with low plasticity as 75% of $s_{u(scu)}$, the in-situ shear strength of this kind of soil can be duplicated.

A numerical study on evaluation of unsupported pillar strength in the room and pillar method (주방식 공법에서 무지보 암주의 강도 산정에 관한 수치해석적 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.443-453
    • /
    • 2013
  • This study aims to evaluate the mechanical behaviors of unsupported rock pillars in a room-and-pillar underground structure by a series of numerical analyses. In addition, rock pillar strengths estimated by a few empirical equations proposed for underground mines are compared with those from numerical analyses. Based on the results from the numerical analysis, the ratio of pillar strength to rock mass strength increases as the ratio of the width of a pillar to its height becomes bigger. It means that higher ratio of pillar width to its height is much more favorable for stabilizing a room-and-pillar underground structure. Especially, unsupported pillar strengths estimated from numerical analyses are higher than rock mass strength when the ratio of pillar width to height is approximately over 1.5. It is also found that the choice of an empirical equation appropriate for a given geometric condition of a pillar is important for its feasible application to the stability analysis of a pillar in the room-and-pillar method.

Performance of Fresh and Hardened Ultra High Performance Concrete without Heat Treatment (상온 양생한 초고성능 콘크리트(UHPC)의 경화 전과 후의 성능 관계)

  • Kang, Sung-Hoon;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.23-34
    • /
    • 2014
  • This study investigates the relationship between the performance of fresh and hardened Ultra-High Performance Concrete (UHPC) without heat treatment. The performance of fresh UHPC is determined by the slump flow test related to the fluidity of concrete mixtures, and the air content test. The variables of these tests are the water to binder ratio, superplasticizer dosages and volume fractions of steel fiber. Generally, insufficient fluidity and excessive air contents in concrete mixtures lead to the insufficient packing density related to the performance of harden concrete. The performance of hardened UHPC is determined by the compressive and flexural tensile tests. The results of the fresh UHPC tests show that there is the linear correlation between each variable and the slump flow diameter, and that the slump flow diameter is linearly decreased as the air content ratio increase. Using these results, the formula is developed to predict the fresh performance before mixing UHPC. The results of the hardened UHPC tests show that the hardened performance is not influenced by the air content ratio in the range of 3.2 to 4.2 per cent. However, the flexural tensile strength dominantly influenced by the volume fractions of steel fiber.

An Experimental Study on the Optimum Mix Design and Site Application Case of Soil Mixing Wall for Trench Stability (구벽안정성을 위한 SMW 최적배합비 및 현장적용 사례에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The purpose of this study is to investigate experimentally the optimum mix design and site application case of soil mixing wall (SMW) method which is cost-effective technique for construction of walls for cutoff wall and excavation support as well as for ground improvement before constructing LNG storage tank typed under-ground. Considering native soil condition in site, main materials are selected ordinary portland cement, bentonite as a binder slurry and also it is applied $1,833kg/m^3$ as an unit volume weight of native soil, Variations for soil mixing wall are as followings ; (1) water-cement ratio 4cases (2) mixing velocity (rpm) 3levels (3) bleeding capacity and ratio, compressive strength in laboratory and site application test. As test results, bleeding capacity and ratio are decreased in case of decreasing water-cement ratio and increasing mixing velocity. Required compressive strength (1.5 MPa) considering safety factors in site is satisfied with the range of water-cement ratio 150% below, and test results of core strength are higher than those of specimen strength in the range of 8~23% by actual application of element members including outside and inside in site construction work. Therefore, optimum mix design of soil mixing wall is proposed in the range of unit cement $280kg/m^3$, unit bentonite $10kg/m^3$, water-cement ratio 150% and mixing velocity 90rpm and test results of site application case are satisfied with the required properties.

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.

Engineering Characteristics of the Light Weight Soil Used Recycled Stylofoam Beads and Disposal Soils (폐스티로폴 입자와 현장 발생토를 활용한 경량혼합토의 공학적 특성)

  • Shin, Bang-Woong;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled stylofoam and stabilizer. Recycled stylofoam beads is able to use by lightweight fill materials because it is light, adiabatic, and effective for vibration interception. Especially, recycled stylofoam beads is easy to supply because stylofoam have been recycle item in 1996. In this study, physical and geotechnical properties of the light weight mixed soil(weathered granite soil mixed with Stylofoam Beads) were analyzed by laboratory experiments to examine its suitability for backfill materials. Laboratory tests were performed to evaluated strength, bearing capacity, weight, permeability, microphotograph analysis with variation of mixing ratio. Based on the results, it is concluded that the use of recycled stylofoam beads is acceptable lightweight fill.

  • PDF

Evaluation of Early Compressive Strength of Concrete Using Early Strength Improvement Type Cement and Early Strength Activator (조기강도 개선형 시멘트 및 초기수화 촉진 혼화제를 사용한 콘크리트의 조기압축강도 발현특성 평가)

  • Park, Gyu-Yeon;Kim, Gyu-Yong;Choe, Gyoeng-Choel
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.322-328
    • /
    • 2014
  • In this study, revelation performance of concrete at early age according to types of cement, water reducing ratio of high performance superplasticizer and mixing of accelerator for early hydration was examined aiming for reduction of construction period of framework through securing strength at early age of concrete. It was observed that strength at early age, 5MPa in 12hours, 14MPa in 18hours, is secured by early strength improvement type cement and using promotion admixture for early hydration which are Sodium persulfate, Potassium hydroxide. Therefore cost reduction is expected to be possible in construction site by reducing construction period of frame work.

Characterization of Weathered Zone bearing Corestones through Scale Model Test (실내모형실험에 의한 핵석 풍화대 지반 특성 산정)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.435-443
    • /
    • 2007
  • This study shows the prediction of the engineering properties of weathered zone bearing corestones through the engineering geological surveys and the scale model test in the laboratory. The window survey and the observation on the borehole core were peformed on three natural slopes in corestones area in order to analyse the distribution pattern and the geometrical properties of corestones. Natural corestones were crushed and abrased for the scale model test into less than 5 mm in maximum-2mm in average by the scale reduction ratio based on the size of natural corestones and the specimen size. Scale model tests were carried out on soil and plaster model specimens with different corestone content ratio - 0%, 10%, 20%. The direct shear test on soils shows that shear strength is increased by the increase of corestone content ratio. The increase of cohesion is, however, more important factor to the shear strength of soil for 20% corestone content ratio due to interlocking of crushed corestone particles. The plaster model test shows a tendance of increase of UCS and modulus of elasticity with increase of corestone content. The variation ratio of specimen property by change of corestone content ratio in plaster model test was applied to in situ properties in order to estimate the properties of weathered zone bearing corestones. So it could be predicted that the increase of corestone content to 10% and to 20% produce about 18% and 30% UCS's increase respectively.