• Title/Summary/Keyword: 현장수압시험

Search Result 106, Processing Time 0.023 seconds

Liquefaction Evaluation of Reclaimed Sites using an Effective Stress Analysis and an Equivalent Linear Analysis (유효응력해석과 등가선형해석을 이용한 매립지반의 액상화 평가)

  • Park, Sung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.83-94
    • /
    • 2008
  • In this study an effective stress analysis was performed to evaluate liquefaction potential and ground settlement for reclaimed sites. The effective stress model can simulate the stiffness degradation due to excess pore pressure and resulting ground deformation. It is applicable to a wide range of strain. An equivalent linear analysis suitable for low strain levels was also carried out to compare the effective stress analysis. Shear stress ratio calculated from an equivalent linear analysis was used to determine SPT blow count to prevent liquefaction. Depending on the magnitude of potential earthquake and fine contents, the SPT blow count was converted into an equivalent cone tip resistance. It was compared with the measured cone tip resistance. The measured elastic shear wave velocity and cone tip resistance from two reclaimed sites in Incheon were used to perform liquefaction analyses. Two liquefaction evaluation methods showed similar liquefaction potential which was evaluated continuously. The predicted excess pore pressure ratio of upper 20 m was between 40% and 70%. The calculated post-shaking settlement caused by excess pore pressure dissipation was less than 10 cm.

Settlement Characteristics of a Large-Scale Foundation over a Sabkha Layer Consisting of Carbonate Sand (Sabkha층 탄산질 모래의 침하특성 및 상부기초의 거동)

  • Kim, Seok-Ju;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.247-256
    • /
    • 2013
  • The carbonate sands of the Sabkha layer in the Middle East have very low shear strength. Therefore, instant settlement and time-dependent secondary settlement occur when inner voids are exposed, as in the case of particle crushing. We analyzed settlement of the Sabkha layer under a large-scale foundation by hydrotesting, and compared the field test results with the results of laboratory tests. With ongoing particle crushing, we observed the following stress-strain behaviors: strain-hardening (Sabkha GL-1.5 m), strain-perfect (Sabkha GL-7.0 m), and strain-softening (Sabkha GL-7.5 m). General shear failure occurred most frequently in dense sand and firm ground. Although the stress-strain behavior of Sabkha layer carbonate sand that of strain-softening, the particle crushing strength was low compared with the strain-hardening and strain-perfect behaviors. The stress-strain behaviors differ between carbonate sand and quartz sand. If the relative density of quartz sand is increased, the shear strength is also increased. Continuous secondary compression settlement occurred during the hydrotests, after the dissipation of porewater pressure. Particle crushing strength is relatively low in the Sabkha layer and its stress-strain behavior is strain-softening or strain-perfect. The particle crushing effect is dominant factor affecting foundation settlement in the Sabkha layer.

Evaluation of Uplift Force Acting on Foundation of Underground Structure (지하구조물 하부에 작용하는 양압력 평가)

  • Kim, Jin-Man;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.662-671
    • /
    • 2020
  • The uplift force acts directly on the foundation and causes a building to float to the upper ground. To examine the stability of a structure according to the uplift force, four sites (Paju, Anyang, Osan, and Gangneung) were selected, and sensors were installed on the foundations for the field tests. The rainfall characteristics were analyzed around June~September, and the changes in the water level of the adjacent river were considered. The maximum uplift force except for Gangneung did not exceed 72% of the water pressure when the groundwater level was up to the surface. On the other hand, the maximum uplift force in Osan was approximately 67%, but the reliability was slightly inferior because the difference from the average (46%) was large. The minimum uplift force was within 10% except for Anyang (~ 41%). At the Gangneung site on soft rock where the permanent drainage facility was installed before the measurement, the maximum and minimum uplift force was approximately 14% and 3.5%, respectively. Based on the measurement results, the possibility of overdesigning or underdesigning comes from the design by the hydrostatic pressure when the groundwater level is up to the surface.

A Development of Embankment Stability Evaluation Method on Soft Foundation (연약지반상의 흙쌓기 안정관리 기법 개발)

  • Kim, Jeong-Seon;Chang, Yong-Chai;Park, Sung-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.43-54
    • /
    • 2013
  • This study proposed a new embankment stability control method to analyze the measurement data on the slope activities of the soft ground, using the Stability Control Index (SCI) obtained from the p-q stress paths. In order to validate this new technique, the data from triaxial compression tests (CU) and field measurement were compared. SCI is calculated from the current path of the effective stress points ($p^{\prime}=p-{\Delta}u$) using the relative position between the Total Stress Path $p_{max}$ and the point of $k_f$ line $p_f$. From this result, the point of effective stress $p^{\prime}(=p-{\Delta}u)$ will have access to the point $p_f$ of $k_f$ line when the pore water pressure occurs or the point of total stress pass $p^{\prime}_{max}$ when the pore pressure dissipates. Thus, the Stability Control Index (SCI) can evaluate quantitatively the safety of embankment from the relative position of the effective stress path.

Characteristics of the Horizontal Stress and the Possibility of Stress Induced Brittle Failure in Chuncheon-Yanggu Mountainous Region by the In-situ Stress Measurements (현장 측정에 의한 춘천-양구 산악지역 내 수평응력 분포와 취성파괴 가능성에 관한 연구)

  • Bae Seongho;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.157-167
    • /
    • 2005
  • Current initial rock stress state is one of the key factors required to evaluate the stability and failure around an excavated opening and its importance increases as the construction depth become deeper and the scale of the rock structure become larger. In this paper, the study was performed to evaluate the characteristics of the regional stress state at Chuncheon-Yanggu mountainous region, the East-North part of Kyeonggi Massif. Forty nine field stress measurements in 9 boreholes were conducted at the depth from 20 m to 290 m by hydraulic fracturing method. The fracturing tracing works were carried out by acoustic televiewer scanning. The study results revealed that the different intial rock stress states presented at different formation rock type and the excessive horizontal stress state with stress ratio(K) close to 3.0 was measured at the depth of 200 m and deeper in the intrusive unite body of the study area. The results from the investigation of excessive horizontal stress and its effect on failure mode showed that there exist several points where the localized excessive horizontal stresses are big enough to potentially induce brittle failures around the future openings greater than 100 m in depth within the granite body of the study area.

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

Mix Design and Physical Properties of Concrete Used in Seongdeok Multi-purpose Dam (성덕 다목적댐 콘크리트의 배합설계 및 역학적 특성)

  • Kim, Jin-Keun;Jang, Bong-Seok;Ha, Jae-Dam;Ryu, Jong-Hyun;Go, Suk-Woo;Kim, Jeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.517-520
    • /
    • 2008
  • Gravity dam use self weight to stand external force like hydraulic pressure. In general, gravity dam concrete is divided into internal and external concrete. Seongdeok dam is gravity dam which is being constructed in Cheongsong-gun, Gyeonsangbuk-do. And upstream cofferdam was constructed to examine the temperature crack due to hydration heat and to decide the height of placement. In this study, we examined the mix design of internal/external concrete and physical properties(compressive strength, adiabatic temperature rise). And we also performed laboratory tests to verify exothermic properties. Lastly, we measured the hydration heat and thermal stress of upstream cofferdam.

  • PDF

In-situ Stress Measurement Using AE and DRA (AE와 DRA를 이용한 초기응력의 측정에 관한 연구)

  • Park, Pae-Han;Jeon, Seok-Won;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • In-situ stress measurement using AE (Acoustic Emission) and DRA (Deformation Rate Analysis) is usually carried out under uniaxial loading in the laboratory and it consumes delay time from drilling to testing. Therefore, it should be considered how the lateral stress and delay time influence on the test results for the in-situ stress determination. As the delay time increased, the accuracy of estimating the pre-stress decreased. The pre-stress of the specimen loaded only axially was determined within an error of less than 9% (using AE) and 4% (using DRA). And the specimen on which axial pre-stress and the confining pressure were loaded had an error of less than 17% (using AE) and 14% (using DRA). The results of AE and DRA for field specimens were very similar with each other but smaller than those of hydraulic fracturing method.

  • PDF

Analysis of Rainfall Infiltration Velocity for Unsaturated Soils by an Unsaturated Soil Column Test : Comparison of Weathered Gneiss Soil and Weathered Granite Soil (불포화토 칼럼시험을 통한 불포화토 내 강우침투속도 분석: 편마암 풍화토와 화강암 풍화토의 비교)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su;Park, Hyuek-Jin
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.71-82
    • /
    • 2011
  • The unsaturated soil column tests were carried out for weathered gneiss soil and weathered granite soil in order to obtain the relationship between rainfall intensity and infiltration velocity of rainfall on the basis of different unit weight conditions of soil. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at constant time interval. For the column test, three different unit weights were used as in-situ condition, loose condition and dense condition, and rainfall intensities were selected as 20 mm/h and 50 mm/h. In 20 mm/h rainfall intensity condition, average rainfall infiltration velocities for both gneiss and weathered granite soils were obtained as $2.854{\times}10^{-3}$ cm/s ~ $1.297{\times}10^{-3}$ cm/s for different unit weight values and $2.734{\times}10^{-3}$ cm/s ~ $1.707{\times}10^{-3}$ cm/s, respectively. In 50 mm/h rainfall intensity condition, rainfall infiltration velocities were obtained as $4.509{\times}10^{-3}$ cm/s ~ $2.016{\times}10^{-3}$ cm/s and $4.265{\times}10^{-3}$ cm/s ~ $3.764{\times}10^{-3}$ cm/s respectively. The test results showed that the higher rainfall intensity and the lower unit weight of soil, the faster average infiltration velocity. In addition, the weathered granite soils had faster rainfall infiltration velocities than those of the weathered gneiss soils except for the looser unit weight conditions. This is due to the fact that the weathered granite soil had more homogeneous particle size, smaller unit weight condition and larger porosity.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.