• Title/Summary/Keyword: 현장수압시험

Search Result 106, Processing Time 0.019 seconds

Study on characteristics of initial rock stress state at shallow depth of the gneiss region in the central part of seoul (서울 중심부 편마암 분포지역 저심도 구간의 암반 초기응력 분포특성 연구)

  • Bae, Seong-ho;Jeon, Seok-won;Choi, Yong-Kun;Kim, Jae-min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.147-159
    • /
    • 2003
  • Since early in the 90's, as the need for construction of underground rock structures has been largely increased, the in-situ rock stress measurement has been widely carried out to provide the quantitative information on the initial stress state of test site at the design stage of underground rock structures. Among the diverse method developed for measuring rock stress, hydraulic fracturing method is most popularly used because it is applicable at pre-construction stage and has no limit in testing depth. In this paper a study on initial rock stress state at shallow depth of the plain gneiss region in the central part of Seoul was performed on the basis of the in-situ hydraulic fracturing stress measurement results from the 11 test boreholes. And overall characteristics of the initial stress field of the study area are discussed.

  • PDF

Development of Integrated Type Main Frame and Downhole Sonde Apparatus for Hydraulic Packer Testing in Seabed Rock under High Water Pressure (고수압 해저지반 수리특성 조사용 일체형 메인 프레임과 공내 측정장치 개발)

  • Bae, SeongHo;Kim, Jangsoon;Jeon, Seokwon;Kim, Hagsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.258-276
    • /
    • 2018
  • The accurate and quantitative ground information on the hydraulic conductivity characteristics of rock mass is one of the key factors for evaluation of the hydro-geological behaviour of rock mass around an excavated opening under high water pressure. For tunnel and rock structures in seabed, where the sea acts as an infinite source of water, its importance become greater with increasing construction depth below sea level. In this study, to improve the problems related with poor system configuration and incorrect data acquisition of previous hydraulic packer testing equipment, we newly developed an integrated main frame and 30 bar level waterproof downhole sonde apparatus, which were optimized for deep hydraulic packer test in seabed rock mass. Integration of individual test equipment into one frame allows safe and efficient field testing work on a narrow offshore drilling platform. For the integrated type main frame, it is possible to make precise stepwise control of downhole net injection pressure at intervals of $2.0kg_f/cm^2$ or less with dual hydraulic oil volume controller. To ensure the system performance and the operational stability of the prototype mainframe and downhole sonde apparatus, the field feasibility tests were completed in two research boreholes, and using the developed apparatus, the REV(Representative Elementary Volume) scale deep hydraulic packer tests were successfully carried out at a borehole located in the basalt region, Jeju. In this paper, the characteristics of the new testing apparatus are briefly introduced and also some results from the laboratory and in-situ performance tests are shown.

A New Method for Dilatometer Dissipation Analysis Using an Equivalent Radius and Optimization Technique (등가반경과 최적화기법을 이용한 딜라토메터 소산시험 해석법)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.43-50
    • /
    • 2001
  • 딜라토메터는 실험의 간편성, 경제성, 신속성 및 반복성 등을 바탕으로 현장에서의 지반공학적 물성추정에 보편화되고 있다. 또한 간단한 장비구성과 손쉬운 사용법에도 불구하고 다양한 지반공학적 물성들 -예로서, $K_{o}$ , OCR, $c_{u}$ , $\psi$, $c_{h}$, $k_{h}$, ${\gamma}$, M, $u_{o}$ -을 추정할 수 있으며 다양한 지반공학적 설계문제에 성공적으로 적용되어 왔다. 그러나 제안된 관계식들이 대부분 기존실험 결과들과의 비교를 통하여 얻어진 경험적 상관관계이며, 특히 압밀계수 추정에 관한 부분은 관입시 평면변형 상태의 지반변형으로 인한 관입모사의 복잡성으로 인하여 피에조콘 소산시험 해석을 위해 제안된 이론 해들에 경험적인 가정사항들을 추가하여 사용하는 반경험적 방법들과 순수한 경험적인 방법이 사용되어 왔다. 본 연구에서는 elf라토메터 관입기의 실제 평면적을 등가의 원형반경으로 고려한 등가반경을 사용하고 최적화기법을 적용함으로써, 소산시험에서 실제 관측된 간극수압($p_2$)과 딜라토메터 소산시험을 모사하여 얻어진 예측 간극수압의 차이를 최소화하는 수평압밀계수 추정법을 제안하였다. 제안된 방법을 국내 양산지역에서 수행된 딜라토메터 소산실험에 적용하였으며 추정된 수평압밀계수 값을 기존의 딜라토메터 수평압밀계수 추정법들과 불교란 시료를 이용한 일차원 실내 압밀실험으로 얻어진 수평압밀계수 값들과 비교검증 하였다. 그 결과 제안된 방법으로 기존의 방법에 비해 실내 압밀실험 결과와 일치하는 수평압밀계수 추정결과를 얻었다. 또한, 제안된 방법으로 얻어진 수평압밀계수는 전 소산도 범위에서 고르게 관측값과 일치하는 소산곡선을 예측하여, 최적화기법을 이용한 딜라토메터 소산시험 해석으로 전 소산과정을 대표하는 압밀계수의 추정이 가능할 것으로 사료된다.

  • PDF

A Study on Development and Application of New Borehole Roughness and Verticality Measurement System (BKS-LRFS) for Drilled Shafts (현장타설말뚝의 굴착공 벽면거칠기 및 연직도 측정 시스템(BKS-LRPS)의 개발 및 적용성에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.55-68
    • /
    • 2009
  • A new borehole roughness and verticality measurement system (BKS-LRPS) for rock socketed drilled shafts were developed and verified its field application. The stability of BKS-LRPS was verified for several field conditions, which included the effect of measuring unit shaking, the application of water/air calibration factors, and the resistance of high water pressure inside piles. Also, effective measurement distances for various conditions of turbidity were defined in the field by measuring borehole roughness and vertical alignment for 6 drilled shafts. Vertical alignments for all drilled shafts could be measured by BKS-LRPS. However, borehole roughness was not able to be measured due to high turbidity caused by RCD drilling processing. Based on the BKS-LRPS field verification, BKS-LRPS is the first borehole roughness and verticality measurement system applying both in the water and air.

Assessment on Consolidation Material Function and Initial Stress for Soft Ground by Hydraulic Fill the at Southern Coast of Korea (남해안 준설매립 연약지반에 대한 압밀 물질함수 및 초기응력 산정)

  • Jeon, Je Sung;Koo, Ja Kap
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.136-145
    • /
    • 2011
  • For a massive project related to building national industrial complexes on a soft ground applied to PVD after dredging and hydraulic fill, laboratory tests were carried out using undisturbed sample taken from various depth. Piezocone penetration and dissipation tests were carried out to assess horizontal coefficient of consolidation and initial stress in field. The ground consists of upper dredged fill and lower original clay layer having both similar marine clays. It should be, however, considered as multi-layered soft ground having different initial void ratio, initial water content, initial effective stress, and permeability and compressibility with directions. To assess initial stress of those soft layers in which have different stress history related to consolidation, CPTu test results, especially excess pore water pressure, were analyzed. It allows to find out distribution of excess pore water pressure and initial stress inner original clay layer.

Development of Test Equipment for Complex Underwater Environments (수중복합 환경시험장비의 개발에 관한 연구)

  • Kim, Jong Cheol;Lee, Gi Chun;Choi, Byung Oh;Jung, Dong Soo;Lee, Choong Sung;Jeon, Jun Wan;Lee, Jae Ho;Hwang, Kyung Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2015
  • Deep-sea equipment such as underwater robots and unmanned submersible vehicles, include various machine components and sensors, and it is important that their reliabilities be tested before use in the fields. This is necessary because they are affected by complex extreme-environment conditions, such as high pressures, extreme temperatures, and tidal forces that are present in the deep sea. We require test equipment that can conduct empirical tests in conditions that mimic these complex oceanic environments. In this study, we propose specifications that should be met, and a design plan for the primary components, which should limit their use to a maximum water pressure of 2.0 MPa, water temperature of $5{\sim}60^{\circ}C$, and a maximum flow velocity of 2 m/s. in work-in type underwater combined environment test equipment and. We present test system development procedures to verify the reliability of products and systems used in deep-sea environments.

Experimental Study on Consolidation Characteristics of Soft Marine Deposit by Piezocone Dissipation Test (피에조콘 소산시험을 통한 해성연악지반의 압밀특성에 대한 실험적 연구)

  • 박찬국;송정락;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Field piezocone dissipation tests are performed, and the results are compared to the Rowe cell consolidation tests results to investigate the consolidation characteristics of soft marine deposit at the same location in Korea. From these results, statistical formula fur the relation between the coefficients of horizontal consolidation$(c_r)$ from Rowe cell consolidation tests and $t_{50}$ from pore pressure dissipation tests by Piezocone is suggested through the regression analysis. The results are also compared to the existing theoretical formula. It is also shown that suggested formula is similar to Torstensson's(1977) formula based on cylindrical cavity expansion theory and Houlsby and Teh's(1988) formula based on strain path method.

Determination of Consolidation Characteristics of Clayey Soils from the Self-boring Pressuremeter Test (자가굴착식 프레셔미터 시험을 이용한 점성토의 압밀특성 산정)

  • 장인성;정충기;김명모;조성민
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.87-96
    • /
    • 2002
  • The strain holding test(SHT) or the sell-boring pressuremeter test(SBPT) has been effectively utilized to determine the horizontal coefficient of consolidation$(c_h)$ of clayey soils. However, a commonly used procedure proposed by Clarke et al.(1979) can lead to an erroneous estimation of $(c_h)$ because of its simplified assumptions. This paper deals with numerical analyses based on realistic test conditions of the generally accepted testing procedure, and .using the most commonly used type of pressuremeter. The effects of pressuremeter geometry, partial drainage during cavity expansion, and the cavity strain level for the holding test are investigated with the radial distributions of the initial excess pore pressure and their dissipation rate. Based on the results of the numerical analyses, the curve of the time factor for the 50% degree of consolidation($T_{50}$) needed to estimate $(c_h)$ is proposed. Comparisons are made between $(c_h)$ values estimated from the SHT or the SBPT and those obtained from other in situ and laboratory tests performed at two sites in Korea. These results suggest the improved capability of the $T_{50}$ curve proposed herein.

Characteristics of the Regional Rock Stress Field at Shallow Depth in the Kyungsang Basin with In-situ Rock Stress Measurement (현장 측정을 통한 경상분지의 천부 초기응력장 특성에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Kim, Jae-Min;Kim, Jang-Soon
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.149-161
    • /
    • 2008
  • It is nearly impossible to estimate the exact state of the current rock stress of interest site by the theoretical and physical approaches except some specific geological situations. This means that in-situ stress measurement is a unique way to obtain reliable information on rock stress especially for civil and mining engineering related problems. Since late in the 90's, in-situ rock stress tests have been widely conducted to provide the quantitative information on the stress state of engineering site at the design stage of an underground rock structure in the Kyungsang Basin, Korea. The study area is the near surface regions at the depth less than 300 m in the Kyungsang Basin. It includes Yeosoo to the west and Busan to the east. Totally, 270 in-situ stress measurements were conducted in the surface test boreholes at the depth from 14 m to 300 m by hydraulic fracturing method. In this paper, based on the measurement data set, the overall characteristics of the current in-situ rock stress fields in the study area are briefly described. And also the investigation results on the difference between the stress distributions for the granitoid and the andesitic rock region are also introduced. Finally, the distributions of the regional horizontal stress directions in Busan and the Yangsan faults area are shown.

Nonlinear Consolidation Analysis Considering Radial Drainage (수평배수를 고려한 비선형 압밀해석)

  • Lee, Song;Chae, Young-Su;Hwang, Koou-Ho;Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.105-115
    • /
    • 2000
  • 본 연구는 현실에 부합하는 연약지반의 압밀거동을 예측하기 위한 연구로서, 일단 3차원 배수 조건하에서 지반의 자중 및 압축성과 투수성의 비선형적 성질이 고려된 비선형 압밀모델을 구성하였다. 또한 연직 배수재의 시공과정에서 발생할수 있는 지반의 교란현상 및 다양한 이질층의 구성, 점증적인 하중재하 조건, 연직배수재의 부분관입 조건에 대한 고려가 가능하도록 비선형 압밀모델을 수정, 보완하였다. 이상의 연구결과를 바탕으로 유한차분방법에 의한 수치해석을 실시하였고 최종적으로 각종 희귀분석과정을 도입한 3차원 비선형 압밀해석 프로그램을 개발하였다. Ska-Edeby의 시험시공 사례를 통한 개발 프로그램의 검증을 실시하였는데, 시험시공 사례의 경우, 현장에서 측정한 깊이별 침하량 및 간극수압 결과를 개발 프로그램에 의한 예측결과와 비교, 분석하였다. 또한 개발 프로그램을 이용하여 다층지반 해석과 관련된 기존 해석방법의 문제점 및 지반의 교란효과와 연직배수재의 부분관입조건, 점증적인 하중재하 조건등이 지반의 압밀거동에 미치는 영향에 대해 살펴보았다.

  • PDF