• Title/Summary/Keyword: 현장생물정화

Search Result 45, Processing Time 0.033 seconds

미생물계면활성제를 이용한 오염토양 복원기법과 현장적용성에 관한 연구

  • 송태을;상병인;김만호;황종식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.120-123
    • /
    • 1997
  • 오염토양 복원의 신기술로서 미생물계면활성제를 이용한 생물학적 정화법(Bioremediation)의 표준화된 절차와 현장적용 결과를 제시하였다. 적절한 양분과 수분 그리고 산소를 공급하여 유류 오염물질의 생물학적 제거효율을 극대화시킬 수 있었으며 특히 유류오염물질을 효과적으로 분산시키기 위해 미생물계면활성제를 사용함으로써 오염된 토양을 단기간 내에 복원하는데 상당히 효과적인 기술임을 확인 할 수 있었으며 지속적인 현장적용 기술의 개발을 통하여 국내외적으로 당면하고 있는 토양오염문제를 해결하는데 크게 이바지 할 수 있을 것으로 사료된다.

  • PDF

The Study for Performance TestㆍVerification Standard, Form approval procedure(draft) of OSBA (생물정화제제의 성능시험ㆍ검정기준, 형식승인절차(안) 등에 관한 연구)

  • Chung Jin-Won;Yoon Joo-yong;Shin Jae-Rouk;Kim Han-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.16-27
    • /
    • 2003
  • For the last decade, some 400 small and large oil spill accidents have occurred every year. Such accident blow a serious damage to the marine resource and ecosystem, which can't be estimated in terms of economic and environmental losses. The physical/chemical methods used currently may be effective at the initial stage of accidents, but they can't serve to remove the spilled oil completely. Moreover, the dispersant may lead to a secondary contamination detrimental to the lives inhabiting wet lands, beaches and tidal zone. Thus, a new decomposing technology Is required for the environmentally sensitive areas. Bioremediation is the active use of biological techniques to mitigate the consequences of a spill using biological processes and refers both of stimulation of pollutant biodegradation and/or to enhance ecosystem recovery Bioremediation is an economically attractive method for the clean-up of oil-contaminated area. Bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mud flat environment.

  • PDF

Column experiment for contaminated coastal sediment bioremediation using biostimulating agent (연안오염저질의 생물정화를 위한 생물활성촉진제의 효능 평가 : 현장 컬럼실험)

  • Woo, Jung-Hui;Song, Young-Chae;Subah, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.83-84
    • /
    • 2014
  • This study evaluated the effectiveness of biostimulating agent in contaminated coastal sediment. The study was conducted via column tests in coastal sea wherein two separate columns were employed for two different polymers used and another column for a blank. The biostimulating agent was made by mixing sea sediment with biostimulants viz acetate, nitrate, sulfate. The biostimulating agent was then rolled into balls, dried and coated with either Cellulose Acetate (CA) or Polysulfone (PS) to control the release of the biostimulants. The pH was around 7.6~8 for 4 months while COD, TP and TN were significantly lower in the column containing biostimulating agents. Heavy metal(Fe, Zn, Cd, Cr, Pb, Cu) was converted to stable forms and PS coated biostimulating agent had a high efficiency of heavy metals distribution.

  • PDF

생물학적 복원기술에 의한 유류 오염토양의 정화

  • 강희만;이주광;이용은;권수열
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.164-167
    • /
    • 2001
  • 현장에서 채취한 토양을 이용하여 Microcosm test를 실시한 결과 온도 및 수분함량이 높을수록 BTEX 분해율이 증가하는 것으로 나타났으며 산소 농도는 21~32% 정도가 적당하였다. 그러나 BTEX 초기농도가 높은 경우에는 생분해율이 감소하는 것으로 나타났다. Bioventing 공법을 현장에 적용한 결과 OUR(Oxygen Utilization Rate)값은 6.3~16.3%O$_2$/day로 조사되었으며 Biodegradation rate 값은 3.4~8.8 mg hydrocarbon/kg soil/day로 조사되어 생물학적 처리 가능성이 있는 것으로 평가되었다.

  • PDF

Effects of Slow Release Fertilizer and Dispersant on Biodegradation of Oil Contaminated in Sand Seashore Mesocosms (지속성 영양염제와 유분산제가 해변모래에 오염된 유류의 생분해에 미치는 영향)

  • 손재학;권개경;김상진
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • To evaluate the effects of slow release fertilizer and chemical dispersant on oil biodegradation, mesocosm studies were conducted on sand seashore. The rapid removal rates (85%) of aliphatic hydrocarbons and the simultaneous decreases of n-$C_{17}$/pristane (69%) and $n-C_{18}/phytane$ (61%) ratios by the addition of slow-release fertilizer (SRF) within 37 days of experiment indicated that SRF could enhance the oil degrading activity of indigenous microorganisms in sand mesocosm. Although the growth of heterotrophic bacteria and petroleumdegrading bacteria in the mesocosm treated with $Corexit 9527^{R}$ was stimulated, the biological oil removal based on the ratios of $Corexit 9527^{R}$ and $n-C_{18}/phytane$ was inhibited. Removal rates of aliphatic hydrocarbons (56%), and n-$C_{17}$/pristane (27%) and $n-C_{18}/phytane$ (17%) ratios by the addition of chemical dispersant $Corexit 9527^{R}$ were similar or lower than those values of control (50, 60, 46%), respectively. The biodegradation activity, however, when simultaneously treated with SRF and $Corexit 9527^{R}$, was not highly inhibited and even recovered after the elimination of chemical dispersant. From these results it could be concluded that the addition of SRF enhanced the oil removal rate in oligotrophic sand seashore and chemical dispersant possibly inhibit the oil biodegradation. Hence, in order to prevent the unrestrained usage of chemical dispersant in natural environments contaminated with oil, the National Contingency Plan of Oil Spill Response should be carefully revised in consideration of the application for bioremedaition techniques.

A Biological Complex Soil Treatment Process Using Selected Soil Bacterial Strains (현장 미생물을 이용한 생물학적 복합토양정화공정에 관한 연구)

  • Cha, Minwhan;Lee, Hanuk;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.5-13
    • /
    • 2010
  • The research is intended to develop and verify a biological complex soil treatment process to treat and restore soil and groundwater which is contaminated with oil, heavy metals, and nutrients through experiments with the series of treatment process such as bioreactor, rolled pipe type of contact oxidation system(RPS), and chemical processing system. 5 microbial strains were separated and selected through experiment, whose soil purification efficiency was excellent, and it was noted that anion- and nonion-series of complex agent was most excellent as a surfactant for effectively separating oils from soils. Method to mix and apply selected microbes after treating the surfactant in the contaminated soil was most effective. The removal efficiencies of total petroleum hydrocarbon (TPH)-contaminated soil about 5,000mg/L and above 10,000mg/L were approximatly 90.0% for 28 days and 90.7% for 81 days by soil remediation system and the average removal efficiencies of BOD, $COD_{Mn}$, SS, T-N, and T-P in leachate were 90.6, 73.0, 91.9, 73.8, 65.7% by the bioreactor and RPS. The removal efficiency was above 99.0% by chemical processing system into cohesive agents.

Effect of the Applied Biostimulant Depth on the Bioremediation of Contaminated Coastal Sediment (연안오염퇴적물에 주입한 생물활성촉진제의 깊이가 생물정화효율에 미치는 영향)

  • Woo, Jung-Hui;Subha, Bakthavachallam;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2015
  • This study investigated the optimum depth for the application of bioremediation in contaminated coastal sediment using a lab scale column experiment. The biostimulants were placed in the top surface of the sediment facing seawater, 3cm, 6cm and 10cm of the depth from the surface, respectibely. During the experiment, the changes of organic pollutants and heavy metal fractions in the sediment were monitored in 1 month and 3month time intervals. The organic pollutants found during various analysis such as chemical oxygen demand, total solids and volatile solids, significantly reduced when the depth of the biostimulant was 3cm or less. In contrast, at a depth of over 6cm, the reduction of organic pollutants decreased, and the results were similar to the control. Heavy metals fractions in the sediment also changed with the depth of the biostimulants. The exchangeable fraction of the metals was quite reduced at the sediment surface in the column, but the organic bound and residual fractions considerably increased at a depth of 3cm. Based on this study, the optimum biostimulants depth for in-situ bioremediation of contaminant coastal sediment is 3cm from the sediment surface.

Development of In-Situ Monitoring System for measuring soil gas (토양가스 측정을 위한 현장 모니터링 시스템 개발)

  • Yu, Chan;Lee, Jong-Beom
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.410-416
    • /
    • 2005
  • 생물학적 통풍법은 유류오염 지역에 자주 적용되는 정화공법이다. 이 과정은 지중에 산소를 충분히 공급함으로서 토착 미생물에 의한 오염성분의 분해를 가능하게 한다. 따라서 이 공법의 적용시 공정진행에 따른 공법의 효율성 분석과 장기적인 정화효율 예측을 위한 지중 가스성분의 모니터링 시스템 도입이 매우 중요하다. 그러나 우리나라에서는 아직 그 적용사례가 보고된 바 없다. 따라서 본 연구에서는 현장에서 토양가스 성분의 변화를 모니터링할 수 있는 시스템을 개발하여 적용한 사례를 시스템의 구성과 측정방법, 관측결과를 중심으로 소개하였다. 현장적용 결과는 토양가스 모니터링 시스템은 운용 시작 후 6개월동안 센서나 측정장비에서 문제가 발생되지 않았으며, 공정관리를 위한 공법효율성 분석에 필요한 자료를 지속적으로 제공하고 있다.

  • PDF

Field application on bioelectrokinetic remediation of shooting range soil (생물학적으로 향상된 동전기 처리를 이용한 사격장 오염토양 정화 현장실증 연구)

  • Kwon, Young-Ho;Kim, Byeong-Kyu;Kim, Jeong-Rae;Kim, Jeong-Yeon;Oh, Hee-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1225-1230
    • /
    • 2010
  • 본 연구는 군부대 사격장의 중금속 오염토양에 대하여 생물학적 용출기술(BT)과 전기동력학적 기술(ET)의 통합공정의 적용성 평가 연구에 대한 것이다. 사격장 오염 토양의 경우 사격에 의해 탄두가 피탄지에 박히면서 오염토양 내에 잔존하여 탄두를 구성하는 주성분인 납과 구리 등에 의해 지속적인 오염원으로 작용하는 특징을 가진다. 따라서 사격장 토양오염정화를 위해서는 이 탄두를 물리적으로 선별하는 물리적 선별공정을 전처리공정으로 수행한 후 인공적으로 조성된 셀에 통합공정 적용성 평가를 위한 현장실증시험을 수행하였다. 생물학적 용출을 통해 토양내 잔류하는 중금속을 이온화시켜 이동성을 크게 한후 전기동력학적 기술을 통해 토양내에서 전해질로 이동시켜 최종적으로 전해질을 처리하는 시스템으로써 공정 모니터링결과 납과 구리 모두 주목할 만한 제거효율을 얻을수 있었다. 오염물질별 공정 적용성 평가결과 납의 경우 황산화박테리아에 의해 이온화가 되지만 황산화박테리아의 생장 부산물인 황산염이온(${SO_4}^{2-}$)과 반응하여 안정성이 큰 Anglesite($PbSO_4 $)를 형성하므로 전체적인 제거효율이 저하되는 것을 확인하였고 기타 미생물을 이용한 생물학적 용출기술 연구의 필요성을 확인하였다. 구리의 경우 황산염박테리아를 이용한 생물학적 용출공정 및 전기동력학적 처리공정의 통합공정을 통해 주목할 만한 제거효율을 얻을수 있었으며 통합공정의 효율성을 확인할 수 있었다. 본 연구를 통하여 미생물학적 용출기술과 전기동력학적 기술의 통합공정은 현장특이성(Site-specific) 확인후 적용가능성이 있음을 확인하였다.

  • PDF

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.