DOI QR코드

DOI QR Code

Effect of the Applied Biostimulant Depth on the Bioremediation of Contaminated Coastal Sediment

연안오염퇴적물에 주입한 생물활성촉진제의 깊이가 생물정화효율에 미치는 영향

  • Woo, Jung-Hui (Nuclear Power Equipment Research Center, Korea Maritime and Oean University) ;
  • Subha, Bakthavachallam (Department of Environmental Engineering, Korea Maritime and Oean University) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Oean University)
  • 우정희 (한국해양대학교 원전기자재연구센터) ;
  • 수바 (한국해양대학교 환경공학과) ;
  • 송영채 (한국해양대학교 환경공학과)
  • Received : 2015.06.09
  • Accepted : 2015.08.21
  • Published : 2015.08.31

Abstract

This study investigated the optimum depth for the application of bioremediation in contaminated coastal sediment using a lab scale column experiment. The biostimulants were placed in the top surface of the sediment facing seawater, 3cm, 6cm and 10cm of the depth from the surface, respectibely. During the experiment, the changes of organic pollutants and heavy metal fractions in the sediment were monitored in 1 month and 3month time intervals. The organic pollutants found during various analysis such as chemical oxygen demand, total solids and volatile solids, significantly reduced when the depth of the biostimulant was 3cm or less. In contrast, at a depth of over 6cm, the reduction of organic pollutants decreased, and the results were similar to the control. Heavy metals fractions in the sediment also changed with the depth of the biostimulants. The exchangeable fraction of the metals was quite reduced at the sediment surface in the column, but the organic bound and residual fractions considerably increased at a depth of 3cm. Based on this study, the optimum biostimulants depth for in-situ bioremediation of contaminant coastal sediment is 3cm from the sediment surface.

실험실 규모의 관 실험을 통하여 연안오염퇴적물의 생물정화 효능에 대한 생물활성촉진제 주입 깊이의 영향을 평가하였다. 생물활성촉진제를 실험관에 충진 된 오염퇴적물의 표면과 표면으로부터 3cm, 6cm, 10cm 위치에 주입한 후 1개월 및 3개월 후 퇴적물의 유기물 및 중금속의 특성 변화를 조사하였다. 시험 오염퇴적물의 화학적 산소요구량, 총고형물 및 휘발성고형물 함량은 생물활성촉진제를 주입하지 않은 대조구에 비해 1개월 후 및 3개월 후에서 크게 감소하였으며, 생물활성촉진제 주입 깊이 3cm에서 최대값을 보였다. 그러나, 오염퇴적물에 주입한 생물활성촉진제의 깊이를 6cm 및 10cm로 증가하였을 때 유기오염물질 감량정도는 점차 감소하였다. 중금속 존재형태변화는 생물활성촉진제 주입 깊이 3cm에서 안정한 형태인 유기물 결합분율과 광물내 잔류분율이 현저하게 증가하였다. 오염퇴적물의 현장생물정화를 위한 최적의 생물활성촉진제 주입 깊이는 퇴적물의 상부 표면으로부터 3cm로 평가되었다.

Keywords

References

  1. Asaoka, S., Yamamoto, T., Yoshioka, I. and Tanaka, H. (2009), "Remediation of coastal marine sediments using granulated coal ash", Journal of Hazardous Materials, Vol. 172, No. 1, pp. 92-98. https://doi.org/10.1016/j.jhazmat.2009.06.140
  2. Beller, H. R., Grbic-Galic, D. and Reinhard, M. (1992), "Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process", Applied and Environmental Microbiology, Vol. 58, No. 3, pp. 786-793.
  3. Boetius, A., Ferdelman, T. and Lochte, K. (2000), "Bacterial activity in sediments of the deep arabian sea in relation to vertical flux", Deep-Sea research Part II: Topical studies in oceanography, Vol. 47, No. 14, pp. 2835-2875. https://doi.org/10.1016/S0967-0645(00)00051-5
  4. Caeiro, S., Costa, M. H., Ramos, T. B., Femandes, F., Silveira, N., Coimbra, A., Medeiros, G. and Painho, M. (2005), "Assessing heavy metal contamination in sado estuary sediment: An index analysis approach", Ecological Indicators, Vol 5, No. 2, pp. 151-169. https://doi.org/10.1016/j.ecolind.2005.02.001
  5. Colwell, R.l R. (2002), "Fulfilling the promise of biotechnology", Biotechnology advances, Vol. 20, No. 3-4, pp. 215-228. https://doi.org/10.1016/S0734-9750(02)00011-3
  6. Fischer, H., Sachse, A., Steinberg, C. E. and Pusch, M. (2002), "Differential retention and utilization of dissolved organic carbon by bacteria in river sediments", Limnology and Oeanography, Vol. 47, No. 6, pp. 1702-1711. https://doi.org/10.4319/lo.2002.47.6.1702
  7. Freixa, A., Rubol, S., Carles-Brangari, A., Fernandez-Garcia, D., Butturini, A., Sanchez-Vila, A. and Romani, A. M. (2015), "The effects of sediment depth and oxygen concentration on the use of organic matter: An experimental study using an infiltration sediment tank", Science of the Total Environment, In press.
  8. Harada, H., Akagi, K., Tutioka, H. and Hashimoto, A. (2014), "Remediation of Coastal Sediments by Addition of Calcium Nitrate and Presence of Benthos in a Muddy Tidal Flat", Journal of Environmental Protection, Vol. 5, No. 8, pp. 703-708. https://doi.org/10.4236/jep.2014.58071
  9. Kabala, C. and Singh, B. R. (2001), "Fractionation and mobility of Copper, Lead, and Zinc in soil profiles in the vicinity of a copper smelter", Journal of Environmental Quality, Vol. 30, No. 2, pp. 485-492. https://doi.org/10.2134/jeq2001.302485x
  10. Kim, K. R., Kim, S. H. and Hong, G. H. (2012), "Remediation technologies for contaminated marine sediments", Journal of Korean Environmental Dredging Society, Vol. 2, No. 1, pp. 20-25.
  11. Li, M.Y., Liu, X., Xie, D. and Li, K. (2011), "Bioremediation of polluted sediments of urban river and its affections to the overlying water bioremediation", eco-web.com, Eco services international.
  12. Lu, A., Zhang, S. and Shan, X. (2005), "Time effect on the fractionation of heavy metals in soils". Geoderma, Vol 125, No. 3-4, pp. 225-234. https://doi.org/10.1016/j.geoderma.2004.08.002
  13. McLaughlin, M. J. (2001), "Ageing of metals in soils changes bioavailability", ICME Fact Sheet on Environmental Risk Assessment, No. 4, September, pp. 1-6.
  14. Nikolopoulou, M., Pasadakis, N. and Kalogerakis, N. (2013), "Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills", Marine Pollutution Bulletin, Vol. 72, No. 1, pp. 165-173. https://doi.org/10.1016/j.marpolbul.2013.04.007
  15. Perelo, L.W. (2010), "Review: In situ and bioremediation of organic pollutants in aquatic sediments", Journal of Hazard Materrials, Vol. 177, No. 1-3, pp. 81-89. https://doi.org/10.1016/j.jhazmat.2009.12.090
  16. Romani, A. M., Butturini, A., Sabater, F. and Sabater, S. (1998), "Heterotrophic metabolism in a forest stream sediment: surface versus subsurface zones", Aquatic Microbial Ecology, Vol. 16, pp. 143-151. https://doi.org/10.3354/ame016143
  17. Song, Y. C., Subha, B. and Woo, J. H. (2014a), "Release of heavy metals into water from the resuspension of coastal sediment", Journal of Korea Society of Environmental Engineers, Vol 36, No. 7, pp. 469-475. https://doi.org/10.4491/KSEE.2014.36.7.469
  18. Song, Y.C., Subha B., Woo, J.H., Lim, H.J. and Senthilkumar, P. (2014b), "Surface Modification of Sediment with Surfactant for Capping Material on Contaminated Coastal Sediment", Water Air Soil Pollution. Vol. 225, pp. 2066-2076. https://doi.org/10.1007/s11270-014-2066-y
  19. Song, Y. C., Senthilkumar, P. and Woo, J. H. (2013), "Effect of biostimulation on growth of indigenous microorganisms in contaminated marine sediments", The Korean Society for Marine Environment & Energy May 23-25, International Convention Center Jeju(Jeju), pp. 49-50.
  20. Subha, B., Song, Y.C. and Woo, J.H. (2014), "An experimental design approach to optimize the effectiveness of biostimulant ball in coastal sediment", International conference on emerging trends in computer and image processing(ICETCIP, 2014) Dec. 15-16, Pattaya(Thailand), pp. 62-65.
  21. Suja, F., Rahim, F., Taha, M.R., Hambali, N., Razali, R., Khalid, A. and Hamzah, A. (2014), "Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations", International Biodeterioration & Biodegradation, Vol. 90, pp. 115-122. https://doi.org/10.1016/j.ibiod.2014.03.006
  22. Tessier, A., Campbell, P. G. C. and Bisson, M. (1979), "Sequential extraction procedure for the speciation of particulate trace metals", Analytical Chemistry. Vol. 51 No. 7, pp. 844-851. https://doi.org/10.1021/ac50043a017
  23. USEPA(2005), Contaminated sediment remediation guidance for hazardous waste sites.
  24. Woo, J.H., Song, Y.C. and Senthilkumar, P. (2014), "Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment", Journal of Navigation and Port Research, Vol. 38, No. 3, pp. 239-246. https://doi.org/10.5394/KINPR.2014.38.3.239